SMU Physics 1307 : Spring2010

Final Exam

Problem 1: The figure at left below shows a spring with spring constant k_1 attached to a mass M which hangs a distance $y_{eq}=-0.4\,\mathrm{m}$ below the equilibrium position of the spring. The figure in the middle shows a spring with spring constant k_2 attached to the same mass M which oscillates with frequency $\omega_2=0.4\,\mathrm{s}^{-1}$. Both springs are now connected to the mass M as shown in the figure at right. Find the oscillation frequency ω of this system. You will need $g=9.8\,\mathrm{m/s^2}$.

$$K_{1} = -y=0$$

$$M = -y=0$$

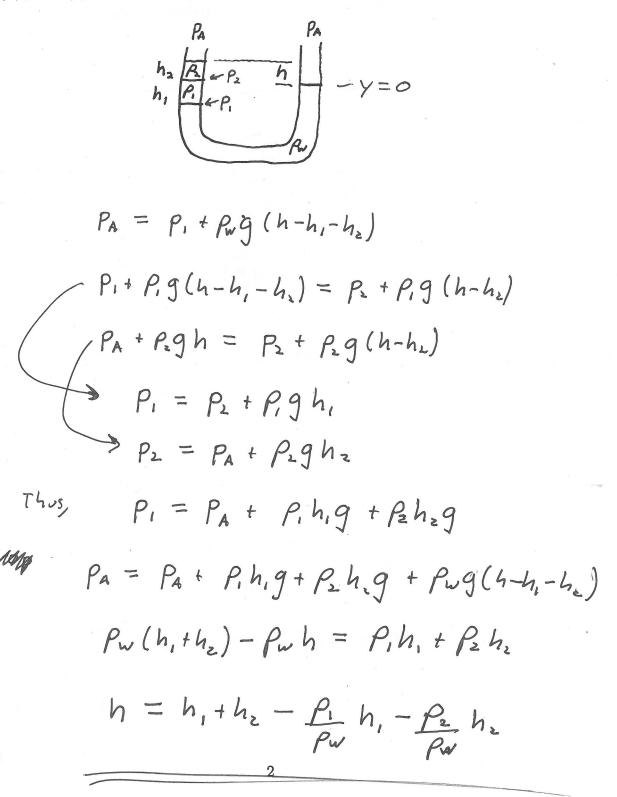
$$M = -y=0$$

$$M = -w^{2}$$

$$W_{2}^{2} = K_{2}/M$$

$$W_{1}^{2} = K_{1}/M$$

$$W_{2}^{2} = -y/2$$


$$W_{1}^{2} = -y/2$$

$$W_{2}^{2} = -y/2$$

$$W_{1}^{2} = -y/2$$

$$W_{2}^{2} = -y/2$$

Problem 2: The figure below shows a U-shaped tube with water $\rho_w = 10^3 \, \mathrm{kg/m^3}$ in the right half. The left half has water with two segments of fluid above it. The top fluid is of height $h_2 = 0.01 \, \mathrm{m}$ and density $\rho_2 = 0.6 \rho_w$. The bottom fluid is of height $h_1 = 0.05 \, \mathrm{m}$ and density $\rho_2 = 0.8 \rho_w$. Find the height h.

Problem 3: The figure below shows a object of volume $V=2\,\mathrm{m}^3$ and unknown mass M which is entirely submerged in water $\rho_w=10^3\,\mathrm{kg/m^3}$. The object is being lifted via a rope by a balloon of volume $V_B=6\,\mathrm{m^3}$ filled with a fluid of density $\rho_\mathrm{f}=0.7\rho_w$. If the acceleration of the system is $a=1\,\mathrm{m/s^2}$ upward, find the mass M and the tension T of the rope. Neglect the mass of the rope and the material of the balloon, but not the fluid inside. Also do not neglect either V or V_B .

$$(M + P_5 V_B)(a+g) = P_W(V_B + V)g$$

$$M = P_w \frac{(V_B + V)g}{(a+g)} - P_s V_B$$

Problem 4: The figure below shows a balloon of volume $V_B = 6 \times 10^3 \,\mathrm{m}^3$ filled with helium $\rho_H = \frac{1}{7}\rho_A$ which is attached to an object of density $\rho = 0.2\rho_w$, length $L = 10\,\mathrm{m}$, and uniform cross-sectional area $A = 7\,\mathrm{m}^2$ which is partially submerged in water. You will need $\rho_A = 1.2\,\mathrm{kg/m^3}$ and $\rho_w = 10^3\,\mathrm{kg/m^3}$. Taking the surface of the water to be y = 0, with the position y coinciding with the bottom of the object, find the equilibrium position $y_{\rm eq}$ and oscillation frequency ω of the system.

$$P_{A} = P_{H}, V_{B}$$

$$P_{W} = 0$$

$$P_{W} = 0$$

$$P_{W} = 0$$

$$(\rho AL + P_H V_B) \frac{d^2 Y}{dt^2} = -(\rho AL + P_H V_B)g$$

$$+ P_A V_B g + P_A (L+y) Ag + P_W y g A$$

$$\frac{d^2y}{dt^2}(PAL+P_AV_B) = -(P_W-P_A)ygA + P_Ag(V_B+LA) - (PAL+P_BV_B)g$$

$$W^{2} = \frac{(P_{W} - P_{A}) 9A}{PAL + P_{H} V_{B}}$$