SMU Physics 1307: Spring 2011

Exam 1

Problem 1: The figure below shows a ball that has been hit from ground level at angle $\theta_0 = 40^\circ$ and observed a time $t = 3.6\,\mathrm{s}$ later to have a velocity vector which makes an angle $\theta = -10^\circ$ with the horizontal. Express the angle θ in terms of the velocity vector components v_x and v_y at time t. Then express these components in terms of θ_0 and the unknown magnitude $|\vec{v}_0|$ of the initial velocity vector. Thus compute $|\vec{v}_0|$, and use it to find x,y, and v_y at time t.

$$V_{x} = V_{ox} = V_{o}\cos\theta_{o}$$

$$V_{y} = V_{oy} - g + V_{o}\cos\theta_{o}$$

$$= V_{o}\sin\theta_{o} - g + V_{o}\cos\theta_{o}$$

$$= V_{o}\sin\theta_{o} - g + V_{o}\sin\theta_{o} - g$$

Problem 2: The figure below shows a view from above of two masses which move in concentric circles in a horizontal plane. As shown, the mass $m_1 = 2 \,\mathrm{kg}$ is attached by a string of length $a = 1 \,\mathrm{m}$ to the origin, and by another string of length $b = 2 \,\mathrm{m}$ to a mass $m_2 = 3 \,\mathrm{kg}$. If the masses each take a time $t = 0.1 \,\mathrm{s}$ for each full revolution, find the velocities v_1 and v_2 of the masses, and find the tensions T_1 and T_2 of the respective strings.

Problem 3: The figure at left below shows two masses $m_1 = 2 \,\mathrm{kg}$ and $m_2 = 5 \,\mathrm{kg}$ which are directly touching and sliding together down an inclined plane of angle $\theta = 30^\circ$. If m_1 has a coefficient of kinetic friction $\mu_k = 0.6$ and m_2 experiences no friction, find the acceleration a of the masses, with a positive when the acceleration is down the ramp. Also find the normal force component F which m_2 exerts on m_1 .

The figure at right below shows two masses $m_1 = 2 \,\mathrm{kg}$ and $m_2 = 5 \,\mathrm{kg}$ attached by a string and sliding together up an inclined plane of angle $\theta = 30^\circ$. If, as at left, m_1 has a coefficient of kinetic friction $\mu_k = 0.6$ and m_2 experiences no friction, find the acceleration a of the masses, with a positive when the acceleration is down the ramp. Also find the tension T in the string.

the string.

$$\hat{A} = a\hat{X}$$

$$\hat{A} =$$

Problem 4: The figure below shows an inclined plane of angle $\theta=30^\circ$ which is moving to the right with acceleration \vec{a} . A block of mass $m=1\,\mathrm{kg}$ has coefficient of static friction $\mu_s=0.7$, and is assumed to have the same \vec{a} while it remains static with respect to the surface of the plane. Find the minimum magnitude $|\vec{a}|$ such that the block begins to slide up the plane.

slips when:

$$S = N_S N$$
 $S + mg sine = ma coso$
 $S = N_S Sine = g(sine + N_S cose)$
 $S = g(sine + N_S cose)$
 $S = g(sine + N_S cose)$