SMU Physics 1307: Summer 2009

Exam 1

Problem 1: Assume a baseball player can throw a ball with a velocity of magnitude $|\vec{\mathbf{v}}_0| = 40\,\mathrm{m/s}$. How high y_1 can he throw the ball if he throws it straight up? How much time t_1 will it take to return to the ground? Now assume that he throws it at an angle of $\theta = 45^\circ$ from the horizontal. How far x_2 does the ball travel horizontally? How high y_2 does the ball go vertically? How much time t_2 will it take to return to the ground? Use $g = 9.8\,\mathrm{m/s^2}$.

①
$$V_{y} = V_{oy} - g + V_{oy} = 40 = |V_{o}||$$
 $y = V_{oy} + -Y_{2}g + V_{oy} = 40 = |V_{o}||$
 $y = V_{oy} + -Y_{2}g + V_{oy} = 40 = |V_{o}||$
 $y = V_{oy} + -Y_{2}g + V_{oy} = 81.63m$
 $v_{y} = V_{oy} + v_{y} = 20 = |V_{o}|| + |V_{o}|| +$

Problem 2: As shown in the figure below, a motorcycle of mass $m=350\,\mathrm{kg}$ is moving with a velocity of magnitude $|\vec{v}|=10\,\mathrm{m/s}$ and has just reached the top of a hill which has a circular profile of radius $r=30\,\mathrm{m}$. Find the normal force N that road exerts on the motorcycle. For what magnitude of velocity $|\vec{v}_c|$ will the motorcycle leave the road; that is, what is the magnitude of velocity at which the normal force vanishes?

Problem 3: As shown in the figure below, two masses are connected by a massless string and slide without friction on opposite sides of a double inclined plane. The masses are $m_1=3\,\mathrm{kg}$ and $m_2=5\,\mathrm{kg}$, and the angles are $\theta_1=30^\circ$ and $\theta_2=20^\circ$. Find the acceleration a (indicate direction) of the masses, and the tension T in the string.

Problem 4: As shown in the figure below, an object of mass $m=70\,\mathrm{kg}$ is moving with velocity of magnitude $|\vec{v}|=15\,\mathrm{m/s}$ (with direction as indicated) around a circular loop of radius $r=12\,\mathrm{m}$. Assume that the object is at the very bottom of the loop, and that the coefficient of kinetic friction of the surface is $\mu_k=0.8$. Find the normal force N on the object. Also, choosing the x axis to point to the right and the y axis to point upward, find both the vertical a_y and horizontal a_x components of the acceleration.

m:

$$V_{x} = V_{y} =$$