SMU Physics 1307: Summer 2009

Final Exam

Problem 1: In the first figure below an unknown mass m_1 is connected to a spring with unknown constant k and oscillates with period $T_1=1s$ on a frictionless horizontal surface about an equilibrium point $d=0.4\,\mathrm{m}$ from the wall on the left. In the second figure below the spring is then oriented vertically, the mass m_1 is removed, and a mass $m_2=1.6\,\mathrm{kg}$ is connected to the spring. The mass m_2 experiences no acceleration when placed at a distance $h=0.5\,\mathrm{m}$ below the ceiling where the spring is attached. Find k and m_1 , and also find the period of oscillation T_2 of the second mass m_2 when the spring is vertical.

m, shown at equilibrium position

$$W_1 = \left(\frac{2\pi}{T_1}\right)^2 = \frac{1}{2\pi}$$
 $M_1 = \left(\frac{7\pi}{T_1}\right)^2 = \frac{3.97 \text{ Kg}}{1}$

h

$$M_2$$
 M_2
 M_2

Problem 2: As shown in the figure below, a spherical balloon of radius $r_1=5\,\mathrm{m}$ is tethered by a massless rope to a sphere of radius $r_2=3\,\mathrm{m}$ which is completely submerged in water $(V=\frac{4}{3}\pi r^3)$ for a sphere). The respective masses of the objects, M_1 and M_2 , are unknown, but the entire system has zero acceleration. At some point the rope is cut and M_1 accelerates upward at $a_1=3\,\mathrm{m/s}$. What is the mass M_1 ? What was the tension T in the rope before it was cut? What is the mass M_2 , and what is its acceleration a_2 (with sign) after the rope is cut? Take the density of water to be $\rho_w=10^3\,\mathrm{kg/m^3}$, and the density of air to be $\rho_A=1.2\,\mathrm{kg/m^3}$.

air
$$f_{1}^{R}M_{1}$$
 rope air water $f_{2}^{R}M_{2}$ air water $f_{2}^{R}M_{2}$ $f_{2}^{R}N_{2}g$ $f_$

BTW: M2/V = 1.0013 Pm

Problem 3: Water in the pipe in the figure below descends from a height $H=3\,\mathrm{m}$, where the pipe is of radius $r_1=0.1\,\mathrm{m}$, into a semicircular section which is below ground, until finally exiting the pipe to form a fountain at ground level, where its radius is $r_2=0.04\,\mathrm{m}$ ($A=\pi r^2$ for a circle). If the water from the fountain flies to a height $h=9\,\mathrm{m}$, find the velocity v_1 and pressure p_1 in the pipe at height H, and find the velocity v_2 when it exits the pipe at ground level.

 $P_{A} = 1.01 \times 10^{5} N_{/m^{2}}$ $P_{W} = 10^{3} kg/m^{3}$

$$P_{1} + \frac{1}{2} P_{w} V_{1}^{2} + P_{w} g H = P_{A} + \frac{1}{2} P_{w} V_{2}^{2} = P_{A} + P_{w} g h$$

$$V_{2}^{2} = 2g h \qquad V_{2} = \frac{13.28 \, m/s}{s}$$

$$A_{1} V_{1} = A_{2} V_{2} \qquad V_{1} = \left(\frac{r_{2}}{r_{1}}\right)^{2} V_{2} = \frac{2.13 \, m/s}{s}$$

$$P_{1} = \frac{1}{2} P_{w} \left(\frac{1}{2} - V_{1}^{2}\right) - P_{w} g H + P_{A} = 1.58 \, 10^{5} N_{m}^{2}$$

Problem 4: The figure below shows a massless spring with $k=3\,\mathrm{N/m}$ which is attached to a rod of length $L=1\,\mathrm{m}$, cross sectional area $A=10^{-4}\,\mathrm{m}^2$, and mass $M=0.2\,\mathrm{kg}$, which has one end submerged in water. If the equilibrium position of the spring when it is not attached to the mass is 1 m above the water, find the equilibrium position y_{eq} of the bottom of the rod (careful with the sign) when it is attached to the spring. Also find the period T of oscillation of the system. Take the density of water to be $\rho_w=10^3\,\mathrm{kg/m^3}$, and ignore the effect of buoyancy due to the air.

$$L \int \frac{M}{water} = V = 0$$

$$(y \text{ denotes bottom of rod})$$

$$(when y = 0 \text{ spring unstretched})$$

$$\frac{d^2y}{dt^2} = -Mg - Ky + P_w A(-y)g = -(K + P_w Ag)y - Mg$$

$$\frac{d^2y}{dt^2} = -\omega^2 y - g \qquad \omega^2 = (K + P_w Ag)/M$$

$$at y = y_{eg} : \frac{d^2y}{dt^2} = -\omega^2 y_{eg} - g = 0$$

$$y_{eg} = -9/\omega^2 = -0.492M$$

$$T = 2\pi W = 1.41s$$