SMU Physics 1307: Fall 2008

Exam 1

Problem 1: A person of mass $m_1=60\,\mathrm{kg}$ is seated on a weight bench and pulls down on a cable which is connected over a (massless, frictionless) pulley to a weight stack of mass $m_2=20\,\mathrm{kg}$. Suppose that the weight stack is lifted upward with acceleration $a_2=3\,\mathrm{m/s^2}$. Find the tension T in the cable, and force N that the bench exerts upward on the person in order to maintain $a_1=0$. Find the smallest acceleration a_2 required to lift the person off the bench, which is the same as the acceleration for which N=0 and $a_1=0$. Find the tension T in this case.

Note:
$$m_1$$
 can draw in cable (length not fixed)

$$T+N-m_1g=m_1a_1$$

$$T-m_2g=m_2a_2$$

1)
$$a_1=0$$
 $a_2=3m/s^2$
 $T+N=m_1g=60\cdot 9.8=588 \text{ Newtons}$
 $T=m_2(g+a_2)=20(9.8+3)=256 \text{ Newtons}$
 $N=m_1g-T=588-256=332 \text{ Newtons}$

2)
$$N=0$$
 $a_1=0$
 $T-m_1g=0$ $T=m_1g=\frac{588 \text{ Newbons}}{3}$
 $a_2=(T-m_2g)/m_2=(588-20.9.8)/20=19.6 \text{ m/s}^2$

Problem 2: A conical pendulum is formed by a string of length $L=5\,\mathrm{m}$ which makes an angle $\theta=25^\circ$ with the vertical and is attached to a weight of mass $m=3\,\mathrm{kg}$ which swings around in a circle with a velocity of constant magnitude. What are the magnitudes, $|\vec{v}|$ and $|\vec{a}|$, of the velocity and acceleration? Find the period of revolution τ of the pendulum and the tension T in the string.

$$\frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}}}} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{$$

Problem 3: Consider a mass $m_1 = 3 \,\mathrm{kg}$ on a level surface with coefficient of kinetic friction $\mu_k = 0.5$. It is connected by a string to a mass $m_2 = 5 \,\mathrm{kg}$ which is on a downward sloping frictionless inclined plane with angle from the horizontal of $\theta = 35^\circ$. If the masses are moving together so that m_1 is initially moving toward the incline, find the acceleration a of the system and the tension T in the string. Repeat the calculation of a and T for the masses moving together so that m_1 is initially moving away from the incline. Take a to be positive if the acceleration of m_1 is toward the incline.

Problem 4: A banked roadway is being built which has a surface with lateral coefficient of static friction $\mu_s = 0.65$. The intention is for vehicles to experience no lateral frictional forces when moving at $v_1 = 30 \,\mathrm{m/s}$, and for the maximum speed at which a car may go around the turn without its wheels slipping to be $v_2 = 60 \,\mathrm{m/s}$. Find the radius of curvature r and banking angle θ of the road. There should be two solutions for r and θ ; express both of them. The mass of a typical car may be taken to be $m = 1000 \,\mathrm{kg}$, but this will not be required to solve for r and θ .