SMU Physics 1307 : Fall 2008

Exam 3

Problem 1 : The mass m; = 3kg in the figure below is given an initial velocity v; = 2m/s to
the right. It then collides elastically with mass my = 1kg which is initially at rest. Find the
velocities v} and v} after this collision. The mass m, then collides completely inelastically
with a mass ms . Find the mass m3 such that the final velocity vy of the resulting combined
mass is equal to v} . How much total kinetic energy is lost in this entire process?
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Problem 2 : The figure below shows two uniform disks, of masses m; = 1kg and my = 3kg
with radii r; = 0.15m and 7, = 0.25m, which spin freely and initially independently about
a common horizontal axis. The moment of inertia about the center of a disk of mass m
and radius r is [ = %mr2. A string attached to a mass M = 0.5kg is initially wrapped
around the first disk. This mass drops a distance of Ay = —1m before it hits the floor and
the string goes slack. Find the tension T in the string and the angular acceleration «; of
the first disk. Find the angular velocity w, of the first disk after the mass M has hit the
floor. Now the disks are brought together and allowed to couple through friction until their

angular velocities are equal. Find the final common angular velocity wy .
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Problem 3 : The figure below shows a spherical mass M of radius R (I = 2MR?) which
is initially placed at rest on top of a hemisphere of radius r = 3R. The object then rolls
without slipping down the hemisphere. Without neglecting the radius of the sphere, find the
angle @ from the vertical at which it leaves the hemisphere.
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Problem 4 : The figure below shows a uniform beam of length L and mass M = 2kg which
is attached to a wall at an angle § = 30° from the vertical. A wire is attached at a right
angle to the lower end of the beam. Find the tension T" in the wire and the components F;

and F, of the force that the wall exerts on the beam.
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