SMU Physics 1307: Fall 2009

Exam 1

Problem 1: The figure below shows a golfball that is struck at ground level at an initial angle $\theta_0=40^\circ$ with magnitude of velocity $|\vec{\mathbf{v}}_0|=45\,\mathrm{m/s}$. It travels a horizontal distance $d=120\,\mathrm{m}$ before striking the vertical face of an office building. Find the height h, the vertical component of the velocity \mathbf{v}_y , and the time of flight of the ball t_f , all at the moment when the ball impacts the office building.

$$V_{ox} = |\vec{v}_{o}| \cos \Theta_{o} = 34.47 \, n/s$$

$$V_{oy} = |\vec{v}_{o}| \sin \Theta_{o} = 28.93 \, m/s$$

$$d = V_{ox} t_{s} \qquad t_{s} = d/V_{ox} = 3.48 \, s$$

$$Y = V_{oy} t_{s} - Y_{2} g t_{s}^{2} = 41.31 \, m$$

$$V_{y} = V_{oy} - g t_{s} = -5.19 \, m/s$$

Problem 2: The figure below shows two blocks $m_1 = 6$ kg and $m_2 = 5$ kg which are directly in contact with each other on a frictionless surface. First consider a force of magnitude $|\vec{F}_R| = 15$ N applied to the left of m_1 and which acts to the right. Find the acceleration of the system a_R in this case and indicate its direction. Also find the magnitude $|\vec{N}_R|$ of the (equal and opposite) normal forces between the blocks. Secondly, consider a force of equal magnitude $|\vec{F}_L| = 15$ N applied to the right of m_2 and which acts to the left. Find the acceleration of the system a_L in this case and indicate its direction. Also find the magnitude $|\vec{N}_L|$ of the (equal and opposite) normal forces between the blocks.

Problem 3: The figure below shows an inclined plane with angle $\theta=30^\circ$ and coefficient of kinetic friction $\mu_k=0.6$. The block on the plane has mass $m_1=2\,\mathrm{kg}$ and a velocity that is up the plane. The block hanging vertically has mass $m_2=6\,\mathrm{kg}$ and is connected to the first mass with a string. Find the acceleration a of the system, with a taken to be positive if the vector \vec{a} points up the plane. Also find the tension T in the string.

Thus, $m_2g - \mu_k m_1 g \cos \theta - m_1 g \sin \theta = (m_1 + m_2) q$ compute q: $q = 4.85 \frac{m_2^2}{2}$ compute T: $T = m_2 g - m_2 q = 29.69 N$ Problem 4: The figure below shows a rotating vertical cylinder of radius $r=6\,\mathrm{m}$ that is part of amusement park ride. The inside of the cylinder has a coefficient of static friction μ_s which holds the riders in place. Assume that the magnitude of the apparent acceleration that a rider feels is $|\vec{A}|=2g$, where $\vec{A}=\vec{a}+g\hat{y}$ with \hat{y} taken to be vertical. What is the magnitude of the velocity $|\vec{v}|$? What is the minimum value of μ_s which prevents the riders from slipping downward?