SMU Physics 1308: Spring 2010

Exam 2

Problem 1: The figure below shows a sheet of charge with area charge density $\sigma=1\,\mathrm{C/m^2}$ centered on a spherical shell of radius $R=0.2\,\mathrm{m}$ and charge $Q=2\,\mathrm{C}$. There is also a point charge $q=3\,\mathrm{C}$ at the center of the sphere. Find the electrical potential V_1 at $r_1=0.1\,\mathrm{m}$ and V_2 at $r_2=0.3\,\mathrm{m}$.

$$V_{1} = \frac{KQ}{r_{1}} + \frac{KQ}{R} - 2\pi K \sigma r_{1}$$

$$= 3.53 \times 10^{11} V$$

$$V_{2} = \frac{KQ}{r_{2}} + \frac{KQ}{r_{2}} - 2\pi K \sigma r_{2}$$

$$= 1.33 \times 10^{11} V$$

Problem 2: The figure below shows a (very small radius) wire carrying current $I_1 = 2$ A (with positive current taken to be out of the page), inside a cylindrical wire of inner radius a = 0.02 m and outer radius b = 0.03 m which carries $I_2 = -3$ A. Taking $\vec{B} = B(r)\hat{\theta}$, find B(r) for r < a, a < r < b, and r > b.

$$\frac{\Gamma < q}{2\pi \Gamma B} = N_o I_o$$

$$\vec{B} = \frac{N_o I_o}{2\pi \Gamma} \hat{\theta}$$

b>r>a

$$Z\Pi \Gamma B = N_0 (I_1 + I_2 (r^2 - a^2)/(b^2 - a^2))$$

$$\vec{B} = \frac{N_0}{2\pi \Gamma} (I_1 + I_2 (r^2 - a^2)/(b^2 - a^2)) \hat{\Theta}$$

$$\frac{\Gamma > b}{Z \pi \Gamma B} = \mathcal{N}_{o}(I_{1} + I_{2})$$

$$\vec{B} = \frac{\mathcal{N}_{o}(I_{1} + I_{2})}{Z \pi \Gamma \Gamma} \hat{o}$$

Problem 3: The figure below shows the cross section of a cylindrically symmetric magnet which has magnetic field given by $\vec{B} = b_1 t \hat{z}$ for $r < a_1$, with $b_1 = 1 \, \text{T/s}$ and $a_1 = 0.1 \, \text{m}$, and $\vec{B} = b_2 t \hat{z}$ for $a_1 < r < a_2$, with $a_2 = 0.2 \, \text{m}$. The magnetic field vanishes $(\vec{B} = 0)$ for $r > a_2$. Taking $\vec{E} = E(r)\hat{\theta}$, find b_2 such that E(r) = 0 for $r > a_2$ and find E(r) for $r < a_1$ and $a_1 < r < a_2$.

$$\hat{z}_{\Theta} = \hat{z}_{\hat{x}}$$

$$\frac{\Gamma < a_1}{E} = -\frac{d}{dt} \left(b_1 + \pi \Gamma^2 \right) = -b_1 \pi \Gamma^2$$

$$\vec{E} = -\frac{b_1 \Gamma}{2} \hat{\theta}$$

$$\frac{\Gamma > a_2}{2\pi \Gamma} = -\frac{d}{dt} \left(b_1 + \pi a_1^2 + b_2 + \pi \left(a_2^2 - a_1^2 \right) \right)$$

$$\vec{E} = 0$$

$$= -\left(b_1 \pi a_1^2 + b_2 \pi \left(a_2^2 - a_1^2 \right) \right) = 0$$

$$b_2 = -b_1 a_1^2 / (a_2^2 - a_1^2)$$

$$\frac{a_{2} > r > a_{1}}{2\pi r E} = -\frac{d}{dt} \left(b_{1} + \pi a_{1}^{2} + b_{2} + \pi (r^{2} - a_{1}^{2}) \right)$$

$$= -\left(b_{1} \pi a_{1}^{2} + b_{2} \pi (r^{2} - a_{1}^{2}) \right)$$

$$= -\pi b_{1} \left(a_{1}^{2} - a_{1}^{2} (r^{2} - a_{1}^{2}) / (a_{2}^{2} - a_{1}^{2}) \right)$$

$$= -\pi b_{1} a_{1}^{2} \left(a_{2}^{2} - \Gamma^{2} \right) / (a_{2}^{2} - a_{1}^{2})$$

$$\vec{E} = -\pi b_1 a_1^2 (a_2^2 - r^2) \int_{0}^{r} dr$$

$$3$$

Problem 4: In the figure below there is a uniform magnetic field $\vec{B} = B\hat{z}$ coming out of the page with $B=1\,\mathrm{T}$. A current loop is shown in the x-y plane which is has width L-x and height x. It is being deformed at a constant rate so that $L=0.1\,\mathrm{m}$ and x=vt with $v=0.2\,\mathrm{m/s}$. Find an expression for the induced current I_{ind} in the loop (with positive I_{ind} taken to be counter-clockwise) as a function of time (this will be valid between t=0 when x=0 and t=L/v when x=L). Find the time t_c when $I_{\mathrm{ind}}=0$, and find $x_c=vt_c$. Also find the forces $(\vec{F}_{\mathrm{R}}, \vec{F}_{\mathrm{L}}, \vec{F}_{\mathrm{T}}, \vec{F}_{\mathrm{B}})$ on each of the four sides when x=L/4. This problem requires $\frac{d}{dt}t=1$ and $\frac{d}{dt}t^2=2t$.