SMU Physics 1308: Spring 2010

Final Exam

Problem 1: The figure below shows a piece of glass which is cut at an angle φ and which is intended to filter out blue light and allow transmission of red light. Take the refractive index of the glass to be $n_b = 1.6$ for blue light and $n_r = 1.5$ for red light, and take the refractive index of the surrounding air to be $n_a = 1$. Find the angle φ at which total internal reflection occurs for a horizontal blue ray incident on the glass-air interface at right. Also find the angle θ_b at which the reflected blue ray is incident on the bottom horizontal surface. Does the blue ray then bounce back along the inside of the piece of glass? If a horizontal red ray is incident on the glass-air interface at right, at what angle θ_r does it emerge from the glass?

SMU Physics 1308: Spring 2010

Final Exam

Problem 1: The figure below shows a piece of glass which is cut at an angle φ and which is intended to filter out blue light and allow transmission of red light. Take the refractive index of the glass to be $n_b=1.6$ for blue light and $n_r=1.5$ for red light, and take the refractive index of the surrounding air to be $n_a=1$. Find the angle φ at which total internal reflection occurs for a horizontal blue ray incident on the glass-air interface at right. Also find the angle θ_b at which the reflected blue ray is incident on the bottom horizontal surface. Does the blue ray then bounce back along the inside of the piece of glass? If a horizontal red ray is incident on the glass-air interface at right, at what angle θ_r does it emerge from the glass?

Problem 2: The figure below shows a wire of radius $R_1 = 0.005\,\mathrm{m}$ carrying a current $I = 0.1\,\mathrm{A}$ which runs through a circular parallel plate capacitor of inner radius R_1 and outer radius $R_2 = 0.015\,\mathrm{m}$. The electric field between the plates of the capacitor has the form $\vec{E} = at\hat{z}$. The magnetic field at all points is purely tangential, and thus has the form $\vec{B} = B(r)\hat{\theta}$. If the magnetic field vanishes outside $(B(r) = 0 \text{ for } r > R_2)$ the capacitor, find the constant a, and find the magnetic field B(r) for $r < R_1$ and for $R_1 < r < R_2$.

Problem 3: You are in a spaceship which has a rest (proper) length of $L_0=100\,\mathrm{m}$. An observer A with negative velocity V_A with respect to your ship claims it is $L_A=85\,\mathrm{m}$ long. An observer B with positive velocity V_B with respect to your ship claims it is $L_B=75\,\mathrm{m}$ long. Find V_A and V_B , and find the relative velocity V_R of B with respect to A.

$$V_{B}$$

$$V_{A}$$

$$V_{A}$$

$$V_{A}$$

$$V_{A} = V_{A}^{-1} = \sqrt{1 - V_{A}^{2}} \qquad V_{B} = \sqrt{1 - V_{B}^{2}} / 2$$

$$V_{A} = -C \left(1 - \frac{1}{2} / \frac{1}{2}\right)^{\frac{1}{2}} \qquad V_{B} = C \left(1 - \frac{1}{2} / \frac{1}{2}\right)^{\frac{1}{2}}$$

$$V_{A} = -0.526c \qquad V_{B} = 0.661c$$

$$V = V_{B \to A}$$

$$U = V_{S \to A} = -V_{A \to S} = -V_{A} = 0.526c$$

$$U' = V_{S \to B} = -V_{B \to S} = -V_{B} = -0.661c$$

$$U' = \frac{U - V}{1 - UV_{C}^{2}} \Rightarrow V = \frac{U - U}{1 - UU_{C}^{2}}$$

$$V = 0.881c$$

Problem 4: Two stars A and B which are not moving with respect to one another are separated by $L=10^6\,c\cdot s$ as measured in the frame that they share. An event E_A happens on A which is given coordinates $c\,t_A=0$ and $x_A=0$. Another event E_B which occurs on B takes place at a time which is simultaneous to E_A as seen by an observer on a ship which moves from A to B with velocity $v=0.8\,c$. Find $c\,t_B$ of this event for the stars frame, and find the distance x_B' of this event in the ships frame. How long $c\,T$ does the ship take to get from star A to star B in the stars frame. How long $c\,T'$ does the ship take to get from star A to star B in the ships frame. How far apart L' are the stars in the ships frame.