SMU Physics 1308: Summer 2010

Exam 2

Problem 1: The figure below shows a wire carrying a current $I_1=2\,\mathrm{A}$ in the \hat{x} direction, and another wire carrying a current $I_2=3\,\mathrm{A}$ in the \hat{z} direction which is positioned a distance $d=0.05\,\mathrm{m}$ from the first wire. Find the magnetic field at a point given by $x=0.06\,\mathrm{m}$ and $y=0.09\,\mathrm{m}$ in the plane perpendicular to I_2 which contains the wire carrying I_1 .

$$\vec{B}_{1} = \frac{\mu_{0} \vec{I}_{1}}{2\pi y} \hat{Z}$$

$$\vec{B}_{2} = \frac{\mu_{0} \vec{I}_{1}}{2\pi y} \hat{Z}$$

$$\vec{B}_{2} = \frac{\chi}{\chi^{2} + (y-d)^{2}} \hat{Z}$$

$$\vec{B}_{3} = \frac{\chi}{\chi^{3} + (y-d)^{2}} \hat{Z}$$

$$\vec{B}_{4} = \frac{\chi}{\chi^{3} + (y-d)^{2}} \hat{Z}$$

$$\vec{B}_{5} = \frac{\chi}{2\pi (\chi^{2} + (y-d)^{2})} \hat{Z}$$

$$\vec{B}_{7} = \frac{\chi}{2\pi (\chi^{2} + (y-d)^{2})} \hat{Z}$$

$$\vec{B}_{8} = \frac{\chi}{2\pi (\chi^{2} + (y-d)^{2})} \hat{Z}$$

$$\vec{B}_{8} = \frac{\chi}{2\pi (\chi^{2} + (y-d)^{2})} \hat{Z}$$

$$\vec{B}_{8} = \frac{\chi}{2\pi (\chi^{2} + (y-d)^{2})} \hat{Z}$$

Problem 2: The figure below shows a wire of radius $a=0.01\,\mathrm{m}$ carrying current $I_1=2\,\mathrm{A}$ (with positive I taken to be in the \hat{z} direction) inside a cylindrical wire of inner radius $b=0.02\,\mathrm{m}$ and outer radius $c=0.03\,\mathrm{m}$ which has carries $I_2=-3\,\mathrm{A}$. Find the respective constant current densities per unit area J_1 and J_2 , and find the form of the magnetic field at all radii r< a, a< r< b, c> r> b, and r> c.

$$B = B(r) \stackrel{\frown}{\Theta}$$

$$B = \frac{I_1}{\pi a^2}$$

$$A_2 = \frac{I_2}{\pi (c^2 - b^2)}$$

$$B = \frac{N_0 I_1 r}{2\pi a^2}$$

$$B = \frac{N_0 I_1}{2\pi a^2}$$

$$C > r > b$$

$$C > r > c$$

$$B = \frac{N_0 I_1}{2\pi a^2}$$

$$C > r > c$$

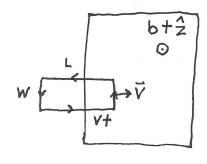
Problem 3: The figure below shows the cross section of a square magnet of sides $d=0.02\,\mathrm{m}$ which has magnetic field given by $\vec{B}=bt\hat{z}$, with $b=1\,\mathrm{T/s}$. The magnetic field vanishes $(\vec{B}=0)$ outside of the square. Also shown is a wire in the shape of a right triangle with two equal sides of length d/2. If the resistance in the wire is $R=1\,\Omega$, find the induced current I_{ind} in the wire (with positive current defined to be counter-clockwise). Also find the respective forces on each segment (left, bottom, hypotenuse) of the wire. Label these \vec{F}_L , \vec{F}_B , and \vec{F}_H and write them in terms of the \hat{x} , \hat{y} , \hat{z} unit vectors. Also find the net force \vec{F}_{net} on the wire.

$$\int d\vec{A} \cdot \vec{B} = b + (\frac{1}{2})^{2}/2 = b + d^{2}/8$$

$$I_{ind}R = \frac{b}{d}\vec{r} \cdot \vec{E} = -\frac{d}{d} \int d\vec{A} \cdot \vec{B} = -bd^{2}/8$$

$$I_{ind} = -\frac{b}{8}$$

$$\vec{F}_{L} = I_{ind}(-\frac{d}{2}\hat{y}) \times (b + \hat{z}) = -I_{ind} \frac{db}{2} + \hat{x} = \frac{b}{d} + \hat{x}$$


$$\vec{F}_{R} = I_{ind}(\frac{d}{2}\hat{x}) \times (b + \hat{z}) = -I_{ind} \frac{db}{2} + \hat{y} = \frac{b}{d} + \hat{y}$$

$$\vec{F}_{R} = I_{ind}(-\hat{x}) \times (b + \hat{z}) \times (b + \hat{z}) \times (b + \hat{z}) \times (b + \hat{z})$$

$$= +I_{ind}(\frac{db}{2}) \times (\hat{y} + \hat{x}) = -\frac{b}{d} + (\hat{y} + \hat{x})$$

$$\vec{F}_{R} = I_{ind}(\frac{db}{2}) \times (\hat{y} + \hat{x}) = -\frac{b}{d} + (\hat{y} + \hat{x})$$

Problem 4: The figure below shows a loop of wire of resistance R, length L, and width w which is entering a region of non-zero magnetic field given by $\vec{B} = bt\hat{z}$. If the wire moves at constant speed v so that the right side of the loop is at a distance vt into the magnetic field, find the induced current I_{ind} as a function of time t. You will need $\frac{d}{dt}t^2 = 2t$. Also find the force \vec{F}_R on the right side of the loop.

$$\int_{A} \vec{A} \cdot \vec{B} = w(v+)b+ = wvb+^{2}$$

$$I_{ind} R = -\frac{d}{d+}(wvb+^{2}) = -2wvb+$$

$$I_{ind} = -2wvb+R$$

$$\vec{F}_{R} = I_{ine}(w\hat{y}) \times (b+\hat{z}) = I_{ine}(wbt)\hat{x}$$

$$\vec{F}_{R} = -\frac{2V}{R}(wbt)^{2}\hat{x}$$