SMU Physics 1308: Fall 2009

Final Exam

Problem 1: The figure below shows a circuit with the corresponding resistances $R_1 = 2\Omega$, $R_2 = 7\Omega$, $R_3 = 11\Omega$, $R_4 = 13\Omega$, $R_5 = 17\Omega$. If the battery has the voltage $V_0 = 5V$, find the currents I_1, I_2, I_3, I_4, I_5 .

reduce to:

Problem 2: The RC circuit shown below has $R = 12\Omega$ and $C = 1.0 \times 10^{-6} \,\mathrm{F}$. Initially (t=0) there is $Q_0 = 0$ on the capacitor, at which time the battery $V_B = 7 \,\mathrm{V}$ is turned on. Find the charge $Q(t_1)$ at $t_1 = 4 \times 10^{-6} \,\mathrm{s}$. At $t_2 = 8 \times 10^{-6} \,\mathrm{s}$ the battery is replaced by a wire and the capacitor begins to discharge. Find the charge $Q(t_2)$ (which is the new Q_0 for the discharging capacitor) and the charge $Q(t_3)$ at $t_3 = 12 \times 10^{-6} \,\mathrm{s}$. Also find the currents I_0 , $I(t_1)$, $I(t_2)$, $I(t_3)$.

$$Q_{0} = 0$$

$$V_{B} = 1$$

$$V_{B} = 1$$

$$V_{B} = 1$$

$$V_{B} = 0$$

$$V_{B$$

$$C$$

$$\frac{1}{1+3} + \frac{1}{2}$$

$$\frac{1}{1+3} + \frac{1}$$

Problem 3: As shown in the figure below, a ray of light is incident from air $(n_a=1)$ at an angle $\theta_1=50^\circ$ from the vertical on a piece of glass which makes a right angle. The light ray bends to an angle θ_2 from the vertical upon passing into the glass, after which it exits the glass at an angle $\theta_3=67^\circ$ from the horizontal. Find the index of refraction n_g of the glass, and find the angle θ_2 . You will need $\sin^2(\theta) + \cos^2(\theta) = 1$.

Problem 4: The figure below shows a piece of glass of refractive index $n_g=1.6$ which is cut at an angle φ such that a ray which enters the glass from the surrounding air $n_a=1.0$ along the horizontal line shown will reflect off the interior surfaces of the glass. Find the smallest angle φ above which this total internal reflection is possible, and find the corresponding reflection angle θ_c . Find the smallest index of refraction n_c such that this scenario is possible (this corresponds to requiring that $\tan(\varphi) = \sin(\varphi)/\cos(\varphi) > 0$). You will need $\sin(\varphi - \theta_c) = \sin(\varphi)\cos(\theta_c) - \cos(\varphi)\sin(\theta_c)$.

$$N_a = 1$$

$$\sin \varphi = N_g \sin \varphi'$$

$$\varphi + 90 - \theta_c + 90 - \varphi' = 180$$

$$\varphi' = \varphi - \theta_c$$

$$TIR: N_g \sin \theta_c = 1$$

$$\sin \varphi = n_g \sin (\varphi - \theta_c) = n_g \left(\sin \varphi \cos \theta_c - \cos \varphi \sin \theta_c \right)$$

$$+ a_1 \varphi = n_g \cos \theta_c + a_1 \varphi - n_g \sin \theta_c$$

$$= 1$$

$$+ a_1 \varphi = \left(n_g \cos \theta_c - 1 \right)^{-1}$$

$$n_g \cos \theta_c = n_g \left(1 - \sin^2 \theta_c \right)^{\chi_2} = n_g \left(1 - n_g^{-2} \right)^{\chi_2} = \left(n_g^2 - 1 \right)^{\chi_2}$$

$$+ a_1 \varphi = \left(\left(n_g^2 - 1 \right)^{\chi_2} - 1 \right)^{-1} + a_1 \varphi > 0$$

$$regumes:$$

$$n_g = 1.6: \qquad \varphi = 76^\circ \qquad \qquad n_g > n_c = \sqrt{2}$$