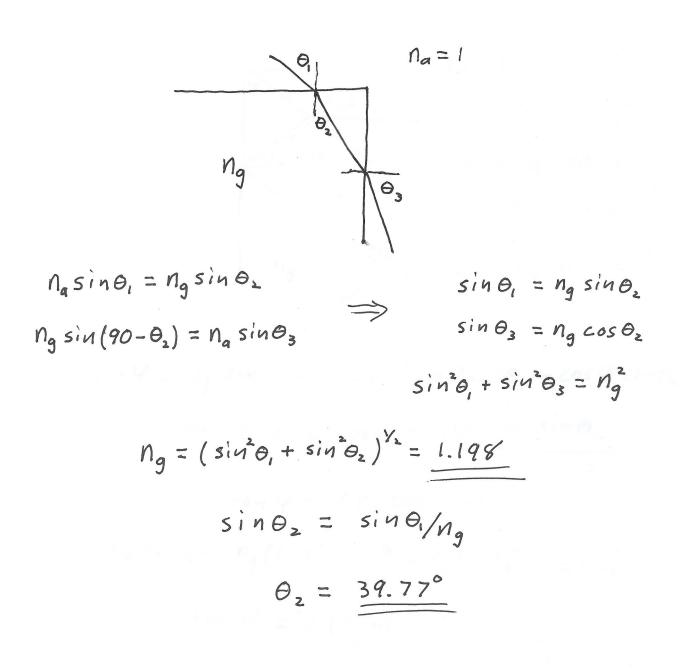
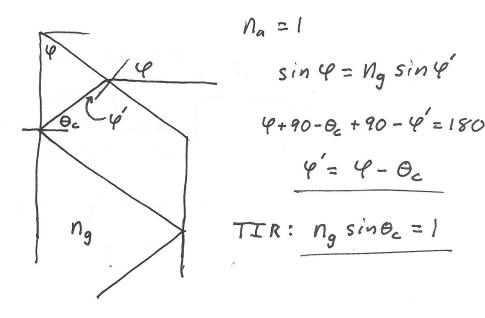
Problem 2: The figure below shows a circular capacitor plate of radius $R_2=0.2\,\mathrm{m}$ which has a hole in the middle of radius $R_1=0.1\,\mathrm{m}$. The electric field is only non-zero between $r=R_1$ and $r=R_2$, where it is constant in space with form $\vec{E}=E(t)\,\hat{z}$ with $dE/dt=5\times 10^{10}\,\mathrm{V/m\cdot s}$. A wire extends through the center of the capacitor carrying an unknown current I, with positive I taken to be out of the page. The magnetic field at all points is purely tangential, and thus has the form $\vec{B}=B(r)\,\hat{\theta}$, with $\hat{\theta}$ being a unit vector in the counter-clockwise direction. If B(r)=0 for $r>R_2$, find the current I running through the wire. Also find B(r) for the two radii $r_1=0.15\,\mathrm{m}$ and $r_2=0.05\,\mathrm{m}$.

B(ri) = NoI + EONO (ri-Ri) dE = -3.24 x 10 8T

Problem 3: As shown in the figure below, a ray of light is incident from air $(n_a=1)$ at an angle $\theta_1=50^\circ$ from the vertical on a piece of glass which makes a right angle. The light ray bends to an angle θ_2 from the vertical upon passing into the glass, after which it exits the glass at an angle $\theta_3=67^\circ$ from the horizontal. Find the index of refraction n_g of the glass, and find the angle θ_2 . You will need $\sin^2(\theta) + \cos^2(\theta) = 1$.



Problem 4: The figure below shows a piece of glass of refractive index $n_g = 1.6$ which is cut at an angle φ such that a ray which enters the glass from the surrounding air $n_a = 1.0$ along the horizontal line shown will reflect off the interior surfaces of the glass. Find the smallest angle φ above which this total internal reflection is possible, and find the corresponding reflection angle θ_c . Find the smallest index of refraction n_c such that this scenario is possible (this corresponds to requiring that $\tan(\varphi) = \sin(\varphi)/\cos(\varphi) > 0$). You will need $\sin(\varphi - \theta_c) = \sin(\varphi)\cos(\theta_c) - \cos(\varphi)\sin(\theta_c)$.



$$\sin \varphi = n_g \sin (\varphi - \theta_c) = n_g \left(\sin \varphi \cos \theta_c - \cos \varphi \sin \theta_c \right)$$

$$\tan \varphi = n_g \cos \theta_c + \tan \varphi - n_g \sin \theta_c$$

$$= 1$$

$$\tan \varphi = \left(n_g \cos \theta_c - 1 \right)^{-1}$$

$$n_g \cos \theta_c = n_g \left(1 - \sin^2 \theta_c \right)^{\chi_2} = n_g \left(1 - n_g^{-2} \right)^{\chi_2} = \left(n_g^2 - 1 \right)^{\chi_2}$$

$$\tan \varphi = \left(\left(n_g^2 - 1 \right)^{\chi_2} - 1 \right)^{-1} + \tan \varphi > 0$$

$$regumes:$$

$$n_g = 1.6: \qquad \varphi = \frac{76}{4}$$

$$n_g > n_c = \sqrt{2}$$