SMU Physics 1308: Spring 2009

Exam 1

Problem 1: One mole of a monatomic $(C_V = 3/2)$ ideal gas at temperature $T_1 = 300 \, K$ occupies $V_1 = 1 \, \text{L} = 10^{-3} \, \text{m}^3$. It then expands adiabatically to volume $V_2 = 2V_1$. It is then compressed at constant pressure until it returns to the volume $V_3 = V_1$. Finally, the gas is heated at constant volume until it returns to the original state. Draw a diagram of the process, find $(p_1, p_2 = p_3)$, (T_2, T_3) , (W_{12}, W_{23}, W_{31}) , and (Q_{12}, Q_{23}, Q_{31}) . Find the efficiency ε of the system by dividing the total work W done by the heat Q_+ exchanged during those parts of the cycle where heat is entering the system. How does this compare to the Carnot efficiency $\varepsilon_C = 1 - T_3/T_1$?

$$P = \frac{n_1 V_{1}}{N_1 V_{1}} = \frac{n_1 R T_{1}}{V_{1}} = \frac{n_2 V_{2}}{N_1 V_{1}} = \frac{n_2 V_{2}}{N_2 V_{2}} = \frac{n_1 V_{2}}{N$$

Problem 2: The figure below shows a semicircle of radius $a=0.05\,\mathrm{m}$. The right half of the semicircle has a uniform linear charge density with total charge $Q_R=Q=0.2\,\mathrm{C}$. The left half of the semicircle has a uniform linear charge density with total charge $Q_L=-2Q=-0.4\,\mathrm{C}$. Find the field at the center of the semicircle. You will need the following integrals:

$$\int_{\theta_1}^{\theta_2} d\theta \sin \theta = -(\cos \theta_2 - \cos \theta_1) \qquad \int_{\theta_1}^{\theta_2} d\theta \cos \theta = (\sin \theta_2 - \sin \theta_1)$$

You may do this problem algebraically in terms of k, Q, and a. If you want to find numerical answers, you will need $k = 9.0 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}^2$, where the units of the electric field are N/C.

$$\vec{\Gamma} = 0$$

$$\vec{\Gamma} = -a \cos\theta \hat{y}$$

$$+ a \sin\theta \hat{x}$$

$$\vec{E} = K \int dq \frac{(\vec{r} - \vec{r})}{|\vec{r} - \vec{r}|^3} = K \int d\theta \, q \, \frac{\lambda(\theta)}{a^3} (a \cos\theta \hat{y} - a \sin\theta \hat{x})$$

$$\vec{E} = \frac{KQ}{\pi a^2} \int d\theta \, (\cos\theta \, \hat{y} - \sin\theta \, \hat{x}) - \frac{2KQ}{\pi a^2} \int d\theta \, (\cos\theta \, \hat{y} - \sin\theta \, \hat{x})$$

$$= \frac{KQ}{\pi a^2} \hat{y} \left(\sin\pi - \sin\theta \right) + \frac{KQ}{\pi a^2} \hat{x} \left(\cos\pi - \cos\theta \right)$$

$$= \frac{KQ}{\pi a^2} \hat{y} \left(\sin\theta - \sin(-\pi/2) \right) - \frac{2KQ}{\pi a^2} \hat{x} \left(\cos\theta - \cos(-\pi/2) \right)$$

$$= \frac{KQ}{\pi a^2} \hat{y} - \frac{KQ}{\pi a^2} \hat{x} - \frac{2KQ}{\pi a^2} \hat{y} = \frac{2KQ}{\pi a^2} \hat{x} = -\frac{KQ}{\pi a^2} (3\hat{x} + \hat{y})$$

Problem 3: The figure below shows a conducting sphere of radius $r_1 = 0.05 \,\mathrm{m}$ with a charge $Q = 1 \,\mathrm{C}$ placed on it. Between this sphere and a conducting shell of inner radius $r_2 = 0.1 \,\mathrm{m}$ lies a constant volume charge density ρ . If the conducting shell has no net charge and the electric field outside the conducting shell is zero, what is ρ ? Also find the electric field $\vec{E}(r)$ between the conducting surfaces. This problem may be done algebraically.

$$\vec{E}=0$$
 Since $\vec{E}=0$ outside $: Q_{+}=0$ $: Q_{-}=0$ $: Q_{+}=0$

since $\vec{E} = 0$ inside conductor, no total change, so pV = -Q

0

V: Volume of constart volume change density P

 $V = \frac{4}{3}\pi (r_2^2 - r_1^2)$ $P = \frac{-Q}{43\pi} (r_2^2 - r_1^2)^{-1}$

2 Consider sphere of radius r within volume change. Gauss' Low sers:

$$E = \frac{KQ}{r^2} + KP \frac{4}{3}\pi \left(1 - \frac{r^2}{r^2} \right)$$

$$E = \frac{KQ}{r^2} \left(1 - \frac{(r^2 - r^2)}{(r^2 - r^2)} \right) = \frac{KQ}{r^2} \frac{(r^2 - r^2)}{(r^2 - r^2)}$$

Problem 4: The figure below shows a closed process which traces out a square in the p-V plane, with all line segments making 45 degree angles with the horizontal. It may be shown that if $\frac{dp}{dV} > -\gamma p/V$, which we will assume, for all points of the process, then an adiabatic curve is steeper than all of the line segments, so that $Q_{12} > 0$, $Q_{23} > 0$, $Q_{34} < 0$, and $Q_{41} < 0$. By simple geometry, recalling that $W = \int p \, dV$, compute the work $W_+ = W_{12} + W_{23}$ and $W_- = W_{34} + W_{41}$ in terms of $p = 20 \, \text{N/m}^3$, $V = 10 \, \text{m}^3$, $\Delta p = 2 \, \text{N/m}^3$, and $\Delta V = 1 \, \text{m}^3$. Using $C_V = \frac{3}{2} R$, compute the change in energy $\Delta E_+ = \Delta E_{12} + \Delta E_{23}$ during the time that heat is added to the system. Use these results to compute $Q_+ = Q_{12} + Q_{23}$ and $Q_- = Q_{34} + Q_{41}$. Now compute the efficiency $\varepsilon = (W_+ + W_-)/Q_+$ of the system. Compare this to the Carnot efficiency $\varepsilon_C = 1 - T_4/T_2 = 1 - (p - \Delta p)/(p + \Delta p)$. This problem may be done algebraically.

