SMU Physics 1308 : Spring 2009

Final Exam

Problem 1: The figure below shows a circuit with the corresponding resistances $R_1 = 3\Omega$, $R_2 = 5\Omega$, $R_3 = 2\Omega$, $R_4 = 7\Omega$, $R_5 = 4\Omega$. If the battery has the voltage $V_0 = 5V$, find the

$$R_2 = 5\Omega, R_3 = 2\Omega, R_4 = 7\Omega, R_5 = 4\Omega$$
. If the battery has the voltage $V_0 = 5V$, find the currents I_1, I_2, I_3, I_4, I_5 .

 R_2
 R_3
 R_4
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_1
 R_2
 R_3
 R_4
 $R_$

 $I_5 = \frac{V_3}{R_F} = 0.23 \, \text{A}^{-1}$

Problem 2: An RLC circuit has $R = 12\Omega$, $C = 1.0 \times 10^{-6}$ F, and $L = 4.0 \times 10^{-2}$ H. If it is being driven by an oscillating source of peak voltage $V_p = 5$ V which is operating at 90% of the resonant frequency of the circuit, what is the peak voltage across the resistor (V_{pR}) , the inductor (V_{pL}) , and the capacitor (V_{pC}) ?

$$W = 0.9 W_{R}$$

$$V_{p} = I_{p} Z$$

$$V_{p} = I_{p} Z$$

$$V_{p} = I_{p} R = \frac{1}{11C} = 5 \times 10^{3} \text{ s}^{-1}$$

$$W = 0.9 W_{R} = 4.5 \times 10^{3} \text{ s}^{-1}$$

$$V_{p} = I_{p} Z$$

$$Z = (R^{3} + (WL - W_{WC})^{2})^{\frac{1}{2}} = 43.9 \Omega$$

$$I_{p} = V_{p}/Z = 0.114 A$$

$$V_{pR} = I_{p} R = 1.37 V$$

$$V_{pC} = I_{p}/W_{C} = \frac{25.31 \text{ V}}{25.31 \text{ V}}$$

$$V_{pL} = I_{p} W_{L} = 20.50 \text{ V}$$

Problem 3: The figure below shows a piece of glass of refractive index n=1.8 which is cut at an angle φ such that the ray shown strikes the glass-air interface an infinitesimal amount beyond the critical angle θ_c . That is assume the angle shown below is the critical angle, but a reflection takes place as shown. Find the angle φ , and the angle θ that the ray emerges from the glass.

$$sin\theta_c = \frac{1}{n}$$
 $\theta_c = \frac{33.75^\circ}{90^\circ - 90^\circ - 90^\circ}$
 $\theta' = 90^\circ - 90^\circ = \frac{56.25^\circ}{90^\circ - 20^\circ}$

Problem 4: The first figure below depicts a small submarine at the surface of the water. The submarine is looking at a lighthouse of height H which is a horizontal distance L away. The angle from the vertical that the submarine sees the lighthouse is $\theta=75^{\circ}$. The second figure shows the submarine submerged at a depth $D=20\,\mathrm{m}$ at the same horizontal distance L from the lighthouse. The angle from the vertical that the submarine sees the lighthouse when submerged is $\theta_1=46^{\circ}$. Find the height of the lighthouse H and the horizontal distance L. The distance L and the angle L in the figure below will have to be eliminated (or solved for) in order to find L and L. Assume the index of refraction of air is L and that of water is L and that of

$$tan\theta = \frac{L}{H} = 3.73$$

$$n_1 sin\theta_1 = n_2 sin\theta_2$$

$$sin\theta_2 = 1.33 sin\theta_1$$

A PARTY

 $\theta_2 = 73.1^{\circ}$

$$tan\theta_{l} = \frac{x}{D} = 1.04$$

$$\tan \Theta_z = \frac{L - x}{H} = 3.29$$

$$X = D + an \theta_i = 44444$$