Problem 1 : The figure below shows a point charge $q = 2 \times 10^{-6} \,\mathrm{C}$, at the center of two concentric conducting shells. The first shell has a total charge Q_1 , and the second shell has a total charge Q_2 . These are distributed partly on the inner and partly on the outer surfaces of the respective shells. The radial component of the electric field at a point $r_1 = 1.5 \,\mathrm{m}$ from the point charge and between the two conducting shells is $E_1 = -3995 \,\mathrm{V/m}$. The radial component of the electric field at a point $r_2 = 3.5 \,\mathrm{m}$ from the point charge and outside both shells is $E_2 = 2935 \,\mathrm{V/m}$. Find the charges Q_1 and Q_2 .

Problem 2 : One mole of an ideal gas at $T_1 = 200$ K occupies $V_1 = 1$ L. It then undergoes an isothermal expansion until $V_2 = 2$ L. After this it undergoes a compression at constant pressure until $V_3 = 1.5$ L. Finally, it undergoes an adiabatic compression until its temperature returns to $T_4 = T_1 = 200$ K. Draw a diagram of the process in the p-V plane. Find (p_1, p_2, p_3, p_4) , (T_2, T_3) , and V_4 . Also find the work done for each process (W_{12}, W_{23}, W_{34}) , and the heat absorbed for each process (Q_{12}, Q_{23}, Q_{34}) . Note that the complete path in the p-V plane is not a closed cycle. What is ΔE for the complete path?