SMU Physics 1313: Fall 2008

Exam 2

Questions 1-3 refer to the energy diagram shown below. The curve denotes the potential energy U(r) and the straight line denotes the total mechanical energy E. The axes cross at r=0 and U=0. The initial radius of the moving object is denoted by the point on the E line. The moving object has non-zero velocity only along the line between it and the fixed object at the origin; that is, we are not considering circular motion. Assume that if the object is not initially at rest then its initial velocity is outward.

- 1. Which statement best describes the system as a whole :
- [a] The system involves a repulsive force.
- (b) The system involves an attractive force with a bound object.
- (c) The system involves an attractive force with an unbound object.
- (d) The system can only be gravitational.
- 2. Which statement best describes the initial state of the object:
- (a) The object has more total energy than potential energy.
- [b] The object is at rest.
- (c) The object has more kinetic energy than total energy.
- (d) The object is being attracted to the origin.
- 3. Which statement best describes the subsequent motion of the object:
- (a) The object will drop toward the origin.
- (b) The object will stay at rest.
- [c] The object will gain kinetic energy as it escapes to infinity.
- (d) The object will reach a maximum radius and fall back toward the origin.

Questions 4-6 refer to the energy diagram shown below. The curve denotes the potential energy U(r) and the straight line denotes the total mechanical energy E. The axes cross at r=0 and U=0. The initial radius of the moving object is denoted by the point on the E line. The moving object has non-zero velocity only along the line between it and the fixed object at the origin; that is, we are not considering circular motion. Assume that if the object is not initially at rest then its initial velocity is outward.

- 4. Which statement best describes the system as a whole:
- (a) The system involves a repulsive force.
- [b] The system involves an attractive force with a bound object.
- (c) The system involves an attractive force with an unbound object.
- (d) The system can only be gravitational.
- 5. Which statement best describes the initial state of the object:
- [a] The object has more total energy than potential energy.
- (b) The object is at rest.
- (c) The object has more total energy than kinetic energy.
- (d) The object is being repelled from the origin.
- 6. Which statement best describes the subsequent motion of the object :
- (a) The object will drop toward the origin.
- (b) The object will stay at rest.
- (c) The object will gain kinetic energy as it escapes to infinity.
- [d] The object will reach a maximum radius and fall back toward the origin.

Questions 7-9 refer to the energy diagram shown below. The curve denotes the potential energy U(r) and the straight line denotes the total mechanical energy E. The axes cross at r=0 and U=0. The initial radius of the moving object is denoted by the point on the E line. The moving object has non-zero velocity only along the line between it and the fixed object at the origin; that is, we are not considering circular motion. Assume that if the object is not initially at rest then its initial velocity is outward.

- 7. Which statement best describes the system as a whole :
- (a) The system involves a repulsive force.
- (b) The system involves an attractive force with a bound object.
- [c] The system involves an attractive force with an unbound object.
- (d) The system can only be gravitational.
- 8. Which statement best describes the initial state of the object:
- (a) The object has more energy than kinetic energy.
- (b) The object is at rest.
- (c) The object has more potential energy than total energy.
- [d] The object is being attracted to the origin.
- 9. Which statement best describes the subsequent motion of the object :
- (a) The object will drop toward the origin.
- (b) The object will stay at rest.
- [c] The object will lose kinetic energy as it escapes to infinity.
- (d) The object will reach a maximum radius and fall back toward the origin.

Problem 1: A mass $m_1 = 3 \,\mathrm{kg}$ is given an initial velocity $v_1 = 2 \,\mathrm{m/s}$ to the right. It then collides elastically with a mass $m_2 = 1 \,\mathrm{kg}$ which is initially at rest. Find the velocities v_1' and v_2' after this collision. The mass m_2 then collides completely inelastically with a mass m_3 which is initially at rest. Find the mass m_3 such that the final velocity v_f of the resulting combined mass is equal to v_1' . How much total kinetic energy is lost in this entire process?

Problem 2: Suppose you are brought back to earth millions of years from now, and the moon looks twice as big as it does today; that is, its distance from the earth is half of what it is today, but the mass of the earth is unchanged. What is the ratio $T_{\rm then}/T_{\rm now}$ of the respective periods? What is the ratio $K_{\rm then}/K_{\rm now}$ of the kinetic energies of the orbits? Find out if total energy has been gained or lost by computing the ratio $(E_{\rm then}-E_{\rm now})/E_{\rm now}$. Note that you will not need any numerical values to compute these ratios.

$$T = 2\pi \left(\frac{r^3}{GMe}\right)^{1/2}$$

$$\frac{T_{41er}}{T_{now}} = \left(\frac{r_{4ker}}{r_{now}}\right)^{1/2} = \left(\frac{1}{2}\right)^{3/2} = \frac{1}{18}$$

$$\frac{V_{41er}}{V_{41er}} = \left(\frac{2\pi r_{6ker}}{r_{4ker}}\right) \left(\frac{2\pi r_{6or}}{r_{4er}}\right) = \left(\frac{r_{4ker}}{r_{4er}}\right) \left(\frac{7_{4or}}{r_{4er}}\right)$$

$$\frac{V_{4ker}}{V_{4or}} = \left(\frac{1}{2}\right) \pi = 72$$

$$\frac{V_{4ker}}{V_{4or}} = \frac{V_2 M V_{4ker}}{V_{4or}} = \left(\frac{V_{6ker}}{V_{4or}}\right)^2 = 2$$

$$\frac{K_{4ker}}{K_{4or}} = \frac{V_2 M V_{4ker}}{V_4 M V_{4or}} = \left(\frac{V_{6ker}}{V_{4or}}\right)^2 = 2$$

$$E = K + U \qquad U = -\frac{GRe}{r} \qquad K = V_2 M V \qquad MV = \frac{GHe}{r}$$

$$E = -\frac{GRe}{2r} \qquad K = \frac{GHerr}{2r}$$

$$E = -\frac{GRe}{r} \qquad K = \frac{GHerr}{2r}$$

$$E_{4ker} - E_{4or} = \frac{F_{4or}}{F_{4ker}} - 1 = \frac{V_2 - 1}{r_{4ker}} = -\frac{1}{2}$$

Problem 3: An alpha particle $(q_2=2e\,,\,m_2=4m_p)$ escapes from a uranium nucleus, and is initially at rest at $r=10^{-15}\,\mathrm{m}$ outside the resulting Thorium nucleus $(q_1=90e)$. Find the final velocity v_∞ of the alpha particle after it escapes to infinity. Find out how this velocity compares to the speed of light $c=3.0\times10^8\,\mathrm{m/s}$ by computing v_∞/c . You will need $k=8.99\times10^9\,\mathrm{N\cdot m^2/C^2}$, where the definition of the Newton is $\mathrm{N=kg\cdot m/s^2}$, as well as $m_p=1.67\times10^{27}\,\mathrm{kg}$ and $e=1.60\times10^{-19}\,\mathrm{C}$.

$$U = \frac{KQ_1Q_2}{\Gamma} = \frac{180Ke^2}{\Gamma}$$

$$K_0 + U_0 = K_5 + U_5$$

$$K_0 = 0 \quad U_0 = \frac{180Ke^2}{10^{-15}M} = \frac{4.15 \times 10^{-11}}{10^{-15}M}$$

$$U_5 = 0 \quad K_5 = \frac{1}{2}(4m_p) V_0$$

$$V_0 = \left(\frac{U_0}{2m_p}\right)^{\frac{1}{2}} \frac{1}{2} \frac{1$$