## SMU Physics 1313: Fall 2008

## Quiz 1

Problem 1: A driver traveling  $v_0 = 30 \,\mathrm{m/s}$  passes a policeman who is stopped by the side of the road. At that moment the policeman begins to accelerate at  $A = 2 \,\mathrm{m/s^2}$ , while the driver maintains constant speed.

- a) How much time  $t_1$  does it take for the policeman to reach the same speed  $V_1 = v_0$  as the driver? How far  $x_1$  has the driver gone in this time? How far  $X_1$  has the policeman gone in this time?
- b) How much time  $t_2$  does it take for the policeman to reach the same position as the driver? How far  $X_2 = x_2$  have both vehicles gone during this time? How fast  $V_2$  is the policeman going at this time?

In general: 
$$V=V_0$$
  $X=V_0+$   $V_0=30 \, m/s$   $V=A+$   $X=Y_2A+^2$   $A=2 \, m/s^2$ 

a) 
$$V=V_0=At$$
,  $t_1=V_0/A=15s$   
 $X_1=V_0t_1=450m$   $X_1=\frac{15s}{2}$ 

b) 
$$X_2 = X_2 \implies \frac{1}{2} A + \frac{1}{2} = V_0 + \frac{1}{2} \quad \text{or} \quad \frac{1}{2} A + \frac{1}{2} = V_0$$
 $x_2 = V_0 + \frac{1}{2} = \frac{900 \, \text{m}}{4}$ 
 $x_2 = V_0 + \frac{1}{2} = \frac{900 \, \text{m}}{4}$ 
 $x_2 = \frac{1}{2} A + \frac{1}{2} = \frac{900 \, \text{m}}{4}$ 

(check)

Problem 2: A golfball is struck at ground level and travels a horizontal distance of  $x_f = 300 \,\mathrm{m}$  before striking the ground after a total time of flight of  $t_f = 6 \,\mathrm{s}$ .

- a) What were the initial velocity components  $V_{0x}$  and  $V_{0y}$  of the ball? What was the initial angle  $\theta_0$  that the trajectory of the ball made with the ground? What was magnitude  $|\vec{\mathbf{V}}_0|$  of the initial velocity vector? What is the maximum height  $y_m$  that the ball reaches?
- b) What are the horizontal  $x_1$  and vertical  $y_1$  positions of the ball after  $t_1 = 5$  s? What are the velocity components  $V_x$  and  $V_y$  of the ball at this time? What is the angle  $\theta$  that the trajectory of the ball makes with the ground at this time? What is magnitude  $|\vec{\mathbf{V}}|$  of the velocity vector at this time?

In general: 
$$V_x = V_{0x}$$
  $X = V_{0x} + V_{0x$