SMU Physics 3344: Fall 2010

Exam 2

Problem 1: The figure below shows a hoop of mass M, radius R, and moment of inertia $I=MR^2$ rolling without slipping on a horizontal surface. A mass m slides freely around the hoop. Take x to be the horizontal location of the center of the hoop and ϕ to be the angular position of m as shown in the figure. Ignoring all constraint forces (that is, by imposing the equations of constraint) in the problem, write the Lagrangian L in terms of the x and ϕ variables. Compute the Euler-Lagrange equation for x and ϕ . Find the conserved momentum in this system and, assuming that $\dot{x}=0$ and $\dot{\phi}=0$ at t=0, use this to relate \dot{x} and $\dot{\phi}$ at all times. Compute the Hamiltonian H for this system and express it entirely in terms of ϕ . If at t=0 we choose x=0 and $\phi=\pi/2$, use energy conservation to find \dot{x} when $\phi=0$.

RO-SOX = -9CO

$$H = \frac{1}{2} \stackrel{\sim}{M} \stackrel{\sim}{x}^{2} + \frac{1}{2} \stackrel{\sim}{m} \stackrel{\sim}{R} \stackrel{\sim}{p}^{2} - \frac{1}{2} \stackrel{\sim}{m} \stackrel{\sim}{R} \stackrel{\sim}{p}^{2} + \frac{1}{2} \stackrel{\sim}{m} \stackrel{\sim}{R} \stackrel{\sim}{p}^{2} - \frac{1}{2} \stackrel{\sim}{m} \stackrel{\sim}{R} \stackrel{\sim}{p}^{2} + \frac{1}{2} \stackrel{\sim}{m} \stackrel{\sim}{m} \stackrel{\sim}{p}^{2} + \frac{1}{2} \stackrel{\sim}{m} \stackrel{$$

Problem 2: The figure at left below shows the top view of a mass m on a horizontal table with coordinates r and θ . The mass is attached to a string which goes through the table and attaches to another mass M which is constrained to move vertically with coordinate y as shown from the side view in the figure at right. Write down the Lagrangian L for the system with the constraint that the string has fixed length ℓ being implemented through a lagrange multiplier given by λ . Compute the Euler-Lagrange equation for the y direction, thus deriving an expression for λ . Now impose the constraint and write down the free Lagrangian L_F in terms of r and θ . Compute the corresponding Euler-Lagrange equations for r and θ , and write down the Hamiltonian H_F associated with L_F . Find the (conserved) angular momentum p_{θ} for L_F , and write H_F in terms of p_{θ} , r, and \dot{r} . Now, using the various Euler-Lagrange equations, express λ in terms of p_{θ} and r.

$$L = \chi_{2} m (\mathring{r}^{2} + \mathring{r}^{2} \mathring{\theta}^{2}) + \chi_{2} M \mathring{y}^{2} - Mgy + \lambda (r - y - l)$$

$$M \mathring{y} = -Mg - \lambda \qquad (\lambda = -Tension)$$

$$L_{F} = \chi_{2} (m + M) \mathring{r}^{2} + \chi_{2} m r^{2} \mathring{\theta}^{2} - Mg (r - l)$$

$$0 (m + M) \mathring{r} = mr \mathring{\theta}^{2} - Mg$$

$$\frac{d}{d +} (mr \mathring{\theta}) = \frac{d}{d +} P_{\theta} = 0$$

$$H_{F} = \chi_{2} (m + \Pi) \mathring{r}^{2} + \chi_{2} m \mathring{r} \mathring{\theta}^{2} + \Pi g (r - l)$$

$$H_{F} = \chi_{2} (m + \Pi) \mathring{r}^{2} + \chi_{3} m \mathring{r} \mathring{\theta}^{2} + \Pi g (r - l)$$

$$H_{F} = \chi_{2} (m + M) \mathring{r}^{2} + P_{\theta} (mr \mathring{\theta}^{2}) + Mg (r - l)$$

$$y = r - l$$

$$M \mathring{y} = M \mathring{r} = -Mg - \lambda$$

$$3 \lambda = -Mg - \frac{M}{(M + M)} (\frac{P_{\theta}^{2}}{mr^{3}} - Mg)$$

$$Using \qquad M(Mr \mathring{\theta}^{2} - Mg) = -(M + m)(Mg + \lambda)$$