SMU Physics 3344: Fall 2010

Final

Problem 1: The figure below shows a circular track of radius R around which a particle of charge q and mass m is constrained to move. There is a constant electric field $\vec{E} = -E\hat{y}$ pointing downward in the figure. There is also a constant magnetic field $\vec{B} = B\hat{z}$ with \hat{z} coming out of the page. The corresponding potential and vector potential are $\phi = Ey$ and $\vec{A} = B(x\hat{y} - y\hat{x})/2$. Write down the Lagrangian L in terms of the polar coordinates r and θ and their time derivatives, converting from x and y if necessary, and implementing the constraint via a Lagrange multiplier N (normal force). Compute the Euler-Lagrange (EL) equations for the system and then implement the constraint, producing a set of two equations which describe the constrained system. Now compute the free Lagrangian L_F by implementing the constraint. From this compute H_F , and verify that its conservation is equivalent to one of the EL equations found above(that is take its time derivative and compare). The free Hamiltonian H_F , which in this case is equivalent to the Hamiltonian H after the constraint is applied, permits an expression for $\dot{\theta}$ in terms of θ and initial conditions. Find the normal force N purely in terms of $\dot{\theta}$ and θ by eliminating $\ddot{\theta}$ from the EL equations

$$X = rc\theta$$

$$Y = rs\theta$$

$$Z = rc\theta$$

$$Y = rs\theta$$

$$Z = rc\theta$$

$$Y = rc\theta$$

$$Xy - yx = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rc\theta - rs\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rs\theta(rs\theta + rc\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rc\theta(rs\theta + rc\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rc\theta(rs\theta + rc\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rc\theta(rs\theta + rc\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rc\theta(rs\theta + rc\theta\theta) = r^2\theta(rs\theta + rc\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rc\theta(rs\theta + rc\theta\theta) = r^2\theta$$

$$Z = rc\theta(rs\theta + rc\theta\theta) - rc\theta(rs\theta + rc\theta\theta) = r^2\theta(rs\theta +$$

El before applying constraints:

Set r=R

(2)
$$mR^2 \frac{d}{dt}(80) = -2ERCO$$
 in right form (no \ddot{o})

below: 8=1-R'0/62

$$H_{F} = YMC^{2} + QERS\Theta$$

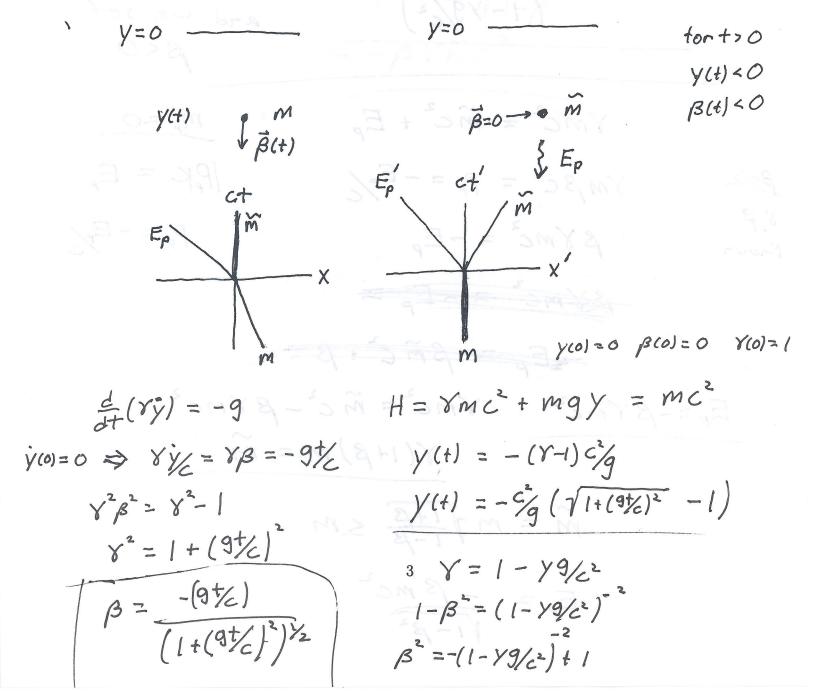
$$H_{F} = YMC^{2} + QERS\Theta$$

$$Also, Y = Y^{2}R^{2}\Theta\Theta^{2}$$

$$= Y^{2}R^{2}\Theta\Theta^{2}C^{2} + Y\Theta = Y^{3}\Theta$$

$$= -QEC\Theta \quad \text{which is} \quad \text{or,} \quad \text{equiv to } \Theta$$

Problem 2: The figure at left below shows a particle of mass m dropping straight down in the negative y direction in a constant gravitational field. The Lagrangian for this system is the same as that for a constant electric field $\vec{E} = -E\hat{y}$ (also $\vec{B} = 0$) with the replacement $qE \to mg$. From the Euler-Lagrange equation, find $\beta(t)$ for the particle with $\beta(0) = 0$. From the (conserved) Hamiltonian, find $\beta(y)$ and from this y(t), with y(0) = 0. As shown in the figure at right, at some time in the free-fall the particle emits a photon straight down in such a way that the particle left behind comes to a stop in the inertial frame of the ground. Find the mass \tilde{m} of the new particle, and find the energy E_p of the photon in the ground frame. These should both be expressed in terms of m and the parameter β of the mass m just before the emmission. Also find the the energy \tilde{E}_p of the photon in the instantaneous rest frame of the mass m just before the emmission. Now express this in terms of \tilde{m} . This emmission process is shown in the two space-time diagrams below.



$$\beta^{2} = \frac{-2y9/c^{2} + (y9/c^{2})^{2}}{(1-y9/c^{2})^{2}}$$

$$\beta^{2} = \frac{-2y9/c^{2} + (y9/c^{2})^{2}}{(1-y9/c^{2})^{2}}$$

$$\beta = -\frac{(y9/c^{2})^{2} - 2y9/c^{2}}{(1-y9/c^{2})}$$

$$\beta = -\frac{(y9/c^{2})^{2}}{(1-y9/c^{2})^{2}}$$

$$\beta = -\frac{(y9/c^{2})^{2}}{(1-y9/$$

BSO

8,3

For Ép use doppler formula or lorentz:

$$\begin{pmatrix}
\tilde{E}_{p} \\
-\tilde{E}_{p}
\end{pmatrix} = \begin{pmatrix}
Y - Y \beta \\
-Y \beta & Y
\end{pmatrix} \begin{pmatrix}
E_{p} \\
-E_{p}
\end{pmatrix}$$

$$\tilde{E}_{p} = Y(I+\beta)E_{p} = \sqrt{\frac{I+\beta}{I-\beta}}E_{p}$$

$$= -\beta Y m c^{2} \sqrt{\frac{I+\beta}{I-\beta}}$$

$$= -\beta Y m c^{2}$$

$$= -\beta Y m c^{2}$$