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A by now famous plot! 

Clear signal 
over a 
continuous 
background! 
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Tevatron: Single Top Production 
T. Aaltonen et al. [CDF Collaboration], arXiv:0809.2581 

.ǳǘ ǎƻƳŜǘƛƳŜǎ ƛǘ ƛǎƴΩǘ ŀƭƭ ǘƘŀǘ ŎƭŜŀƴΧ 

Lƴ ǘƘŜǎŜ Řŀǘŀ ǎŜǘǎΣ Ƨǳǎǘ ōȅ άŎƻǳƴǘƛƴƎέΣ ƛǎ ƴƻǘ ǇƻǎǎƛōƭŜ ǘƻ ŜȄǘǊŀŎǘ ŀ ǎƛƎƴŀƭΗ 
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Tevatron: Single Top Production 

But exploiting the kinematical properties of the process signal and 
back ground can be disentangled! bƻǿΣ ƛǘΩǎ ŎƭŜŀǊ ǘƘŀǘ ŀ ǇǊŜŎƛǎŜ 
knowledge of signal & background is needed. 

CDF 5 sigma discovery! 

arXiv:0903.0885 

D0 5 sigma discovery! 

arXiv:0903.0850 



Need to go beyond LO QCD! 

ωTree level (classical) predictions are only qualitative 

ωFirst quantitative reliable results appear with first 
order corrections in hs 
ωNot only rates are well predicted, but also shapes of 

distributions 

ωOften relaxation of kinematical constrains and 
opening of production channels appear at NLO 

ωUnphysical renormalization/factorization scale 
dependence gets reduced with more terms of the 
perturbative series. 
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 NLO as Indicator of Natural Scales 
The renormalization scale common at Tevatron:  
Turns out to be a bad choice at LHC. 

Complicated processes have 
many scales. 
 
LHC has a much greater dynamic  
range than Tevatron; MW not 
characteristic scale. 

Other signs of bad scale choice: 
Å Negative cross section. 
Å Large LO/NLO ratio. 
Å Rapid growth of scale bands with 
ET. 
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Consider these 2 configurations: 

ωFor (a) 
physical scale of interactions. 

ωFor (b) ET
W may be low and under- 

    estimating the physical scale. 

ω The total (partonic) transverse energy 
is a better variable; gets large for both (a) 
and (b). 

ω Other reasonable scales are for example invariant mass of the 
n jets [Bauer, Lange arXiv:0905.4739]  or local scales (at LO) inspired in 
CKKW reweighting [Melnikov, Zanderighi arXiv:0910.3671] 

Looking at large ET  for the 2nd jet forces configuration (b). 

See also: aŀƴƎŀƴƻΣ tŀǊƪŜ Ψ90;  CǊƛȄƛƻƴŜ Ψ93;  
!ǊƴƻƭŘΣ wŜƴƻ Ψ89;  Baur, Han, Ohnemus (9507336);  
Bozzi Jager, Oleari, Zeppenfeld (0701150)  

The Trouble with ET 
W 
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Compare Two Scale Choices 

Å  LO/NLO ratio sensible 

Å  NLO scale dependence under control 
Message:  Do not use  



Campbell 
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Must Match Experimental Needs! 
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Consider: 
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Real Piece: Subtraction Method 

Nowadays we have several 
automated implementatios! 
(AMEGIC, COMIX, MadFKSΧύ 
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Loop Amplitudes: The Bottleneck! 
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Feynman Diagrams 

ωTool to compute 
amplitudes in Quantum 
Field Theories 

ωEasy to use 

ωIn principle applies to all 
kind of processes and to 
all orders 

ωTree level automation 
manageable (at least for 
up to 7/8 points in QCD)  

 

ωComplexity of 
calculations grow fast 
with number of legs and 
number of loops 

ωIntroduces many non-
physical degrees of 
freedom which cancel in 
final results 

ωGauge invariance hidden 
in them 



Loop Feynman Diagrams 

Consider: 

Χ 



!ƴ 9ȄŀƳǇƭŜΧ 

Not including 
couplings, 
polarization 
vectors, factors 
ƻŦ άiέ, etc 



!ƴ 9ȄŀƳǇƭŜΧ 

Vertices 
Not including 
couplings, 
polarization 
vectors, factors 
ƻŦ άiέ, etc 



!ƴ 9ȄŀƳǇƭŜΧ 

Not including 
couplings, 
polarization 
vectors, factors 
ƻŦ άiέ, etc 

Propagators 



This indeed is a complicated expression! 

You have to deal with Trace Technology and solve many integrals like this one: 



Dealing with Tensor Integrals 

Associated with 1-loop topologies we deal with integrals like 

Å Fully symmetric Lorentz tensor 
Å We can express it as linear combination of (tensor) Lorentz structures 

Notation: 

And of course! We can only build 
this tensors out of the external 
momenta and the metric tensor 
(as long as the external 
momenta is not complete)! 



Dealing with Tensor Integrals 

Associated with 1-loop topologies we deal with integrals like 

And example: 

Lorentz Structure 
Tensor coefficient 
όάt± ŎƻŜŦŦƛŎƛŜƴǘέύ 

Direct Calculation 

.ǳǘ ƛǘ ƎŜǘǎ ǉǳƛǘŜ ƳƻǊŜ ƛƴǾƻƭǾŜŘ ǿƛǘƘ ŜȄǘǊŀ ƭŜƎǎ ŀǘǘŀŎƘŜŘ ǘƻ ǘƘŜ ƭƻƻǇΧ 



Dealing with Tensor Integrals 

Lorentz Structure 
Tensor coefficient 
όάt± ŎƻŜŦŦƛŎƛŜƴǘέύ 

But for D4 functions we get: 

We end up with 22 integral 
coefficients: Direct computation 
is a real challenge! 



Tensor Integrals:  
The Passarino-Veltman Reduction 

Take your 
tensor integral: 

(1) Contract it with a 
given momentum and 
use relations like: 

(2) Simplify and change 
variables to cast results in 
terms of lower rank/lower 
point integrals: 

(3) Contract also the 
expression with the 
Lorentz tensor 
structures 

Χ 

The comparison of the last two expressions gives you a (full) set of linear equations 
for the initial integrals in term of LOWER POINT and LOWER RANK integrals! 



Tensor Integrals:  
The Passarino-Veltman Reduction 

All of which are known in the literature (See Ellis, Zanderighi arXiv:0712.1851) 

A recursive application of this procedure reduces our tensor integrals to Lorentz 
structures and scalar integrals (with a maximum of four internal propagators):  

When solving the linear 
systems one encounters 
inverse powers of the Gram 
determinant: 

Singularities associated with this determinant are non-
physical and often are a source for numerical instabilities 
in the calculations! 


