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Abelian gauge theory

Consider the following Lagrangian

1 — .
E’U(l) — _ZF;M/F“V + Y (" Dy — m)y
The gauge field strength operator and covariant derivative are:

A, (x) — gauge field, Y (x) — fermionic field.

Ly (1) is invariant under the U (1) guage transformations:

P(x) > (@) = e *®y(a)
Au(@) > AL@) = Au@) - Oua(@)

Two important observations:

e Gauge invariance forbids mass term for gauge fields. MiA“AM tedm is not allowed

e But vector-like theories allows mass term for fermions because left handed fermions have
the same charge as hight handed fermions.
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Gauge invariance and Mass terms

e The mass term for gauge fields is given by

1
Lo, = EmﬁlA,u,A“

-p. 3/31
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Gauge invariance and Mass terms

e The mass term for gauge fields is given by

1
Lo, = EmiA,,,A“

Note that L., 4 is not invariant under U (1) gauge transformation:
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e Suppose the fermionic fields 4 have different U (1) charges given by Q.. Consider the
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Gauge invariance and Mass terms

e The mass term for gauge fields is given by

1
Lo, = EmjA,,,A“

Note that L., 4 is not invariant under U (1) gauge transformation:

A A* — A AP 4 (—%A“@MQ + g%a”aaD

e Suppose the fermionic fields 4 have different U (1) charges given by Q.. Consider the
mass term:

E«mqp - — Z mabaaqpb
ab

Under U (1): )
Ya(r) = Pg(x) = eiQa(m)"Pa(w)

with Q being the charge operator such that Qo = Qa’e. This means that Lagrangian

L., is invariant under U (1) gauge transformation only if Qo — Qp = 0.
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Gauge invariance and Mass terms

e The mass term for gauge fields is given by

1
Lo, = EmiA,,,A“

Note that L., 4 is not invariant under U (1) gauge transformation:

A A* — A AP 4 (—gfwa“a + g%a”aaD

e Suppose the fermionic fields 4 have different U (1) charges given by Q.. Consider the
mass term:

E«mqp = — Z mabaaipb
ab

Under U (1): )
Ya(r) = Pg(x) = eiQa(m)"Pa(w)

with Q being the charge operator such that Qo = Qa’e. This means that Lagrangian

L., is invariant under U (1) gauge transformation only if Qo — Qp = 0.

e Gauge symmetry severely restricts mass terms for gauge field as well as fermionic fields.
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Higgs Phenomenon

® \We do see massive vector bosons in Nature and gauge invariance is fundamental concept in
particle phsics.

e How to obtain mass terms for gauge and fermion fields in a gauge invariant way.
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Higgs Phenomenon

® \We do see massive vector bosons in Nature and gauge invariance is fundamental concept in

particle phsics.

e How to obtain mass terms for gauge and fermion fields in a gauge invariant way.

e |ntroduce a complex scalar field ®(x) that is charged under the U (1) symmetry and has a
non-zero vacuum expectation value in all space and time.

e This field is often called Higgs field.

1 _
EU(l),fP — _ZFMVF“U + Y (YD — m)y

@u@)T(D“@) _ @

The potential term is given by

V(@) = —p2ate + A(cb’fcb)z

The Lagrangian L¢; (1), Is invariant under U (1) gauge transformation:

®(x) - D' (x)

Ap(x) — A:L(a:)

e—'i,a(m) <I>(a3),

Au(x) — ;aua@)
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Higgs phenomenon

If we make a special choice for 2, that is u2? > 0, then the potential term
2
V(®) = —u2ate + A(cb’fcb)

developes non vanishing minima (8V (®)/9® = 0) at
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Higgs phenomenon

If we make a special choice for 2, that is u? > 0, then the potential term

V(®) = —u2ate + A(cb’fcb)z

developes non vanishing minima (8V (®)/9® = 0) at

_ 1 /p?
| < Q22> | = =/ %

1
—=7
V2

v — vacuum expectation

value wvev
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Higgs phenomenon

If we make a special choice for 2, that is u2? > 0, then the potential term
2
V(@) = —p2ate + A(cxﬂcb)

developes non vanishing minima (8V (®)/9® = 0) at

| < Q2|2 > | = \/_\/ = % , v — vacuum expectation value vev
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Spontaneous Symmetry Breaking (SSB)

Vig]

e If u? were negative, u? < 0, the vacuum expecation value v = 0, vacuum is
non-degenerate
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Spontaneous Symmetry Breaking (SSB)

Vig]

e If u? were negative, u? < 0, the vacuum expecation value v = 0, vacuum is
non-degenerate

e For u? > 0 the vacuum is infinitely degenerate.

e While the Lagrangian of the system is invariant under U (1) gauge symmetry, the vacuum is
no longer invariant. This is called Spontaneous Symmetry Breaking.
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non-degenerate

e For u? > 0 the vacuum is infinitely degenerate.
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& It costs no energy for the system to move from one vaccuum to another vacuum in the
angular direction while radial direction requires energy.
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Spontaneous Symmetry Breaking (SSB)

Vig]

e If u? were negative, u? < 0, the vacuum expecation value v = 0, vacuum is
non-degenerate

e For u? > 0 the vacuum is infinitely degenerate.

e While the Lagrangian of the system is invariant under U (1) gauge symmetry, the vacuum is
no longer invariant. This is called Spontaneous Symmetry Breaking.

& It costs no energy for the system to move from one vaccuum to another vacuum in the
angular direction while radial direction requires energy.
& Fluctuations around the angular direction correspond to massless modes and those in the
radial direction correspond to massive modes.

, & Massless modes are called Goldston bosons and the massive modes are called Higgs

bosons. o ot



Higgs phenomenon

Parameterise the complex scalar ® by two real scalars ¢;, 1 = 1, 2:

& = %(m tida)
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Higgs phenomenon

Parameterise the complex scalar ® by two real scalars ¢;, 1 = 1, 2:

& = %(m tida)

Make a choice
< Q|p1|Q2 >= v, < QP22 >=0
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Higgs phenomenon

Parameterise the complex scalar ® by two real scalars ¢;, 1 = 1, 2:

& = %(m tida)

Make a choice
< Q|p1|Q2 >= v, < QP22 >=0

Look at the small oscillations near v denoted by ®’:

/

| = ¢1 — v, PH = P2 — < Q@' >=0
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Higgs phenomenon

Parameterise the complex scalar ® by two real scalars ¢;,7 = 1, 2:

- %(m +iga)

Make a choice
< Q|p1|Q2 >= v, < QP22 >=0

Look at the small oscillations near v denoted by ®’:
Pr=¢1—v, Ph=¢2 — <Q¥IQ2>=0
The kinetic term of the scalar field becomes

(DM‘I’)T ('D“‘I’) — %(auﬁb,l + 9Au¢,2)2 (8u¢2 - 9Au¢1)

1
*3
—gvAF (8u¢,2 + gAu‘bl)

-p. 7/31



Higgs phenomenon

Parameterise the complex scalar ® by two real scalars ¢;,7 = 1, 2:

- %(m +iga)

Make a choice
< QP12 >=v, < QP22 >=0

Look at the small oscillations near v denoted by ®’:
Pr=¢1—v, Ph=¢2 — <Q¥IQ2>=0
The kinetic term of the scalar field becomes

(DM@)T (’D“’cb) — %(B,J,qb’l + gA“qb'z)z (8M¢2 — gAM(bl)

1
*3
—gvAF (8u¢,2 + gAu‘bl)

Pleasant surprise: Mass term for gauge fields

Lo, =

| The gauge boson now becomes massive with the mass M4 = gv <gauge coupling

vVev
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Unitary gauge

Peculiar term: ¢2 interacts with A,, in a peculiar way
Lap = —gvA, 0",

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this
peculiar term

-p. 8/31



Unitary gauge

Peculiar term: ¢2 interacts with A,, in a peculiar way
Lap = —gvA, 0",

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this
peculiar term

®(z) = |@(x)| exp (i6(x))

|® ()| is the radial part and 8(x) the angular part of the complex scalar field & (x)
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Unitary gauge

Peculiar term: ¢2 interacts with A,, in a peculiar way
Lap = —gvA, 0",

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this
peculiar term

®(z) = |@(x)| exp (i6(x))

|® ()| is the radial part and @ (x) the angular part of the complex scalar field ®(x) Small
oscillations around the minima can be parameterised as

P(x) = % ('v — h(a:)) exp (z{(a:)/'u)

such that

< Qlh(x)|2 >= 0, < Q¢(x) |2 >=0
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Unitary gauge

Peculiar term: ¢2 interacts with A,, in a peculiar way
Lap = —gvA, 0",

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this
peculiar term

®(z) = |@(x)| exp (i6(x))

|® ()| is the radial part and @ (x) the angular part of the complex scalar field ®(x) Small
oscillations around the minima can be parameterised as

P(x) = % ('v — h(a:)) exp (z{(a:)/'u)

such that
< Q|h(x)|2 >= 0, < Qé(x)|2 >=0
For small fluctuations,

B (x) = % (v + h(z) + i€(x)) + O(h?, £2)

h(x) and &(x) will coincide with ¢/ (x) and ¢5 (x) respectively.
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Unitary gauge

Make a unitary gauge choice through gauge transformation (& — ®U):

oV(z) = exp(—i(x)/v)®(x)
1
= =@+h@)

AL @) = Au@) -~ —-0ué(@)

to remove £ (x) field from the Lagrangian.
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Unitary gauge

Make a unitary gauge choice through gauge transformation (& — ®U):

oV(z) = exp(—i(x)/v)®(x)
1
= =@+h@)

1
Af{ () = Ap(x) — —0u&(x)
gv
to remove £ (x) field from the Lagrangian. The covariant derivative becomes

D,® = exp ( - z{(a:)/'u) (BF,,CI)U — igAgCI)U)

= exp ( — zf(aj)/'v) % (8Mh(a:) — igAg (v + h(w)))
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Unitary gauge

Make a unitary gauge choice through gauge transformation (& — ®U):

oV(z) = exp(—i(x)/v)®(x)

1
= =@ +h@)
AL @) = Au@) -~ —-0ué(@)

to remove £ (x) field from the Lagrangian. The covariant derivative becomes

D,® = exp ( - z{(a:)/'u) (BF,,CI)U — igAgCI)U)

= exp ( — z{(aj)/'v) % (8Mh(a:) — z'gAg (v + h(m)))

Kinetic terms of & and A,, become

(D.®)IDHe = %(Buh(w) — gAY (v + h(w)))z

U U
Fu F* = FY FUm

where Fl, = 8, A7 — 8, Af]
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Unitary gauge

Make a unitary gauge choice through gauge transformation (& — ®U):

oV(z) = exp(—i(x)/v)®(x)

1
= E(U‘i‘h(w))
AL @) = Au@) -~ —-0ué(@)

to remove £ (x) field from the Lagrangian. The covariant derivative becomes

D,® = exp ( - z{(w)/v) (BF,,CI)U — z'gAgCI)U)

= exp ( — z{(aj)/'v) % (8Mh(a:) — z'gA,[f (v + h(w)))

Kinetic terms of & and A,, become

(D.®)IDHe = %(a“h(m) — gAY (v + h(w)))z

U U
Fu F* = FY FUm

where Fl, = 8, A7 — 8, Af] £ (x) has disappeared but will reappear soon!.
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Unitary gauge - - -

1 1
Lan = Ea”ha“h — ZFE,/FU“’” <— K.E terms
1
—p2h?(x) + EgzvagAU“‘ <— mass terms

1 1
+§nggAU“h(a3)(2'v + h(x)) — Av?h3(x) — Z)\h‘l(w) <= interaction term
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Unitary gauge - - -

1 1
Lan = Eauh(‘?“’h — ZFE,/FU“’” <— K.E terms
1
—u?h? () + EgzvagAU“’ <— mass terms

1 1
—I—EnggAU“h(az)(Z'v + h(x)) — Av?h3(x) — Z)\h4(w) <= interaction term

Masses of gauge field and the scalar field:

m45 = g<v© |, m%:u2=2)\v
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Unitary gauge - - -

1 1
Lan = Eauh(‘?“’h — ZFE,/FU“’” <— K.E terms
1
—u?h? () + EgzvagAU“’ <— mass terms

1 1
—I—EnggAU“h(az)(Z'v + h(x)) — Av?h3(x) — Z)\h4(w) <= interaction term

Masses of gauge field and the scalar field:

m45 = g<v© |, m%:u2=2)\v

Interaction vertices of h(x) and the gauge field A, () are given by

. o .2m?4
Vertex : hA,AL —> 21g°vgur = 1 duv
v
. o _2'm,124
Vertex : h hAy,A, =— 2ig°gur =1 duv

v2
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Unitary gauge - - -

1 1
Lan = Eauh(‘?“’h — ZFE,/FU“’” <— K.E terms
1
—u?h? () + EgzvagAU“’ <— mass terms

1 1
—I—EnggAU“h(az)(Z'v + h(x)) — Av?h3(x) — Z)\h4(w) <— interaction

Masses of gauge field and the scalar field:

m45 = g<v© |, m%:u2=2)\v

Interaction vertices of h(x) and the gauge field A, () are given by

. o .2m?4
Vertex : hA,AL —> 21g°vgur = 1 duv
v
. o _2'm,124
Vertex : h hAy,A, =— 2ig°gur =1 5 Guv
v

e Massless guage fields have two transverse degrees of freedom while massive ones have
two transverse and one longitudinal.

e The disappeared &£ () field reappears as longitudinal degrees of freedom of massive gauge
fields.

- p. 10/31
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Fermion mass

Consider the following Yukawa term:
Ly = Yaphopp® + h.c

with ¢ is charged with Qs = Qp — Q.. The above term is invariant under U (1) gauge
symmetry.
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Fermion mass

Consider the following Yukawa term:
Ly = Yaphopp® + h.c

with ¢ is charged with Qs = Qp — Q.. The above term is invariant under U (1) gauge
symmetry. Interms of h field, it becomes

Ly = Yapigp? <h(“i)/§+ ”) + h.c

. Yab'v —U U ﬁ —U U
= /3 Vo Yy + 2 Vo Yy h(x) + h.c
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Fermion mass

Consider the following Yukawa term:
Ly = Yaphopp® + h.c

with ¢ is charged with Qs = Qp — Q.. The above term is invariant under U (1) gauge
symmetry. Interms of h field, it becomes

Ly = Yapigp? (h(“i)/; ”) + h.c

. Yab'v —U U ﬁ —U U
- \/5 ’l:ba, 'l:bb —I_ \/5 ’l'ba, ’l:bb h(w)_l_hc

Mass of the fermion field in the gauge basis becomes

Yab'u

m"/)’ab - \/5
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Fermion mass

Consider the following Yukawa term:
Ly = Yaphopp® + h.c

with ¢ is charged with Qs = Qp — Q.. The above term is invariant under U (1) gauge
symmetry. Interms of h field, it becomes

—U [ h(x) +v

L = Y, + h.c

Y bW o Yy ( 3
Yopv —U U Yoo —U U
= o + — Y, h(x) 4+ h.c
/3 Yo Py 73 Yo ¥y h(x)

Mass of the fermion field in the gauge basis becomes
— Yabv
Map,ab = =7 /5~

The interaction of h and fermions gives

Vertex : h(x)p, vy — z% = —1—
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Goldstone theorem

Consider a set of real fields ®; that transform according to some representation of the gauge
symmetry group G that has n generators.

®; = U5 (C(x)) ®i(x), U(¢(x)) = exp (iT - ¢(x)),

where U (¢) is an element of the group G and T* (a = 1,- - -, ) are its generators.
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Goldstone theorem

Consider a set of real fields ®; that transform according to some representation of the gauge
symmetry group G that has n generators.

®; = U5 (C(x)) ®i(x), U(¢(x)) = exp (iT - ¢(x)),

where U (¢) is an element of the group G and T* (a = 1,- - -,7n) are its generators. For
Infinitesimal transformation ¢ = ¢ K 1,

P, - P; + ieaTi‘;@j, a=1,....n
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Goldstone theorem

Consider a set of real fields ®; that transform according to some representation of the gauge
symmetry group G that has n generators.

®; = U5 (C(x)) ®i(x), U(¢(x)) = exp (iT - ¢(x)),

where U (¢) is an element of the group G and T* (a = 1,- - -,7n) are its generators. For
Infinitesimal transformation ¢ = ¢ K 1,

P, - P; + ieaTi‘;@j, a=1,....n

If the potential V' (®;) is invariant under G,

oV oV
oV = OP; = 1e? ;i = 0
0P, ob;
Since € are arbitrary,
oV
a @ y : 0, al : 1, ..., n.

9%,

-p.12/31



Goldstone theorem

Consider a set of real fields ®; that transform according to some representation of the gauge
symmetry group G that has n generators.

®; = U5 (C(x)) ®i(x), U(¢(x)) = exp (iT - ¢(x)),

where U (¢) is an element of the group G and T* (a = 1,- - -,7n) are its generators. For
Infinitesimal transformation ¢ = ¢ K 1,

P, - P; + ieaTi‘;@j, a=1,....n

If the potential V' (®;) is invariant under G,

ov oV
oV = OP; = ie” ;i = 0
oP; ob; *
Since € are arbitrary,
oV
5. Lii®i = 0 a=1,..,n.
Defferenting with respect to &,
0%V oV
TE®) + 5o Tk = 0

OPLoP; *J
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Goldstone theorem

If V' develops minima at ®; = v;, second term vanishes

2V

S - Tev;, = 0
8<I>k,8<I>,L P,,=v, v "I
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Goldstone theorem

If V' develops minima at ; = v;, second term vanishes

Expanding the potential around ®; = v;,

2V

0P O0P;

The mass square matrix M3z .

A2V (®)
BCI)].CBCI),,;

i="v3

1 82V (P

fI’j:'Uj

2
Mi;

i=vi

a
T;;v;

(P — v;)(®; —vj) + -+

—

= 0
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Goldstone theorem

If V' develops minima at ; = v;, second term vanishes

2V

— TEv; = 0
B‘I)k,a‘l)z P,,=v, ij VJ
Expanding the potential around ®; = v;,
1 82V (®)
V(@):V(vﬁ—kam (Pr —v;)(Ps —v5) +---
i="Yj
The mass square matrix M3z .
9*V(2) 2 2
0%1,0%; = M = M (T5e) =0

i="v3

Suppose G has a subgroup G’ with n/ generators which leaves the vacuum invariant:

T-bj'uj = 0, for b=1,..,n' <— unbroken generators

T,icj'uj #* 0, for c=n’+1,....,n <= Dbroken generators

e |f T are linearly independent, it is clear that M2 has n — n’ zero eigen values.

e Goldston theorem: spontaneous symmetry breaking implies existence of massless spinless
particle. The number of spontaneously broken generators = number of massless fields.

, ® These spinless,massless particles are called Goldstone bosons.

|
-p. 13/31



Gauge fields in the Standard Model

SU(2)r x U(1)y invariant gauge field Lagrangian:

1 . : 1
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Gauge fields in the Standard Model

SU(2)r x U(1)y invariant gauge field Lagrangian:
1 1 TV 1 Qv

where the field strength tensors for SU (2) r gauge field A’fL and U (1)y gauge field B,, are

i
F..

OuAl, — O, A}, +geFAI AL, i=1,2,3
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Gauge fields in the Standard Model

SU(2)r x U(1)y invariant gauge field Lagrangian:
1 1 TV 1 Qv

where the field strength tensors for SU (2) r gauge field A’fL and U (1)y gauge field B,, are
F., = O08uA, —08,A! +ge*Al AL, , i=1,2,3
The SU(2)r X U(1)y gauge transformations are given by

T-A,
2

—~ U (%) U—1(0) — g(BMU(H))U_l(H)

B, — B“—gi,(BMU(H))U_l(H)
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Gauge fields in the Standard Model

SU(2)r x U(1)y invariant gauge field Lagrangian:
1 1 TV 1 Qv

where the field strength tensors for SU (2) r gauge field A’fL and U (1)y gauge field B,, are
F., = O08uA, —08,A! +ge*Al AL, , i=1,2,3
The SU(2)r X U(1)y gauge transformations are given by

T-A,
2

—~ U (%) U—1(0) — g(BMU(H))U_l(H)
B, — B,-— gi/(BMU(H))U_l(H)
o for SU(2)z,
U(8) = exp(—ig .0(x)) with 7%(3=1,2,3) are pauli matrices

o forU(1)y,

U(0) = exp(—t1Y 0(x)/2), with Y hyper charge
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Fermion fields in the Standard Model

The SU(2)r x U(1)y gauge invariant fermion part of the Lagrangian:

€L

Lo — EZ’YM’D“'w "p . {L — (VL) 9eR9Q — <ZII':) s UR, dR}
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Fermion fields in the Standard Model

The SU(2)r x U(1)y gauge invariant fermion part of the Lagrangian:

Lo = EZ’YM’D“'w () . { — (VL> vER, Q — <ZII_:> s UR, dR}
where the covariant derivative is given by

o Y
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Fermion fields in the Standard Model

The SU(2)r x U(1)y gauge invariant fermion part of the Lagrangian:

Lo — EZ’YM’D“'w ",b . { — (VL) sy ER Q — <Zi) s UR, dR}
where the covariant derivative is given by
e . /Y

Under SU(2)r, X U(1)y, the fermion field transforms as

.T
— 11—

5 009 )w(@)

¥(x) = ¢’ () = exp (

() = ¥ (@) = exp < - iY";(X))wm)
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Fermion fields in the Standard Model

The SU(2)r x U(1)y gauge invariant fermion part of the Lagrangian:

Ly = piyuDH e v { N (Vi) yer, Q = <
where the covariant derivative is given by
e . /Y
Under SU(2)r, X U(1)y, the fermion field transforms as

(@) > ¥ (@) = exp (— iz - 0(x) v (@)

P(@) = P’ (x) = exp < _ iY"'(X))«Mm)

2
SinceTL:%L, %LZ—%L, TeR:O, %GRZ—GR,
pL = (6,—idr A, +ilB,\L
i — [T 27" B 22 B )

) 7uRadR}
L
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Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking

SU(2)L xUQ)y = U(1)em
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Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking
SU2)L XU1)y = U(1)em

It is done through the introduction of complex scalar field

_l_
b = (‘(II’)O> , SU(2) doublet, Y(®)=1
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Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking
SU2)L XU1)y = U(1)em

It is done through the introduction of complex scalar field

P+
P = <<I>O> , SU(2) doublet, Y(®)=1

e The SU(2)r X U(1)y gauge invariant Lagrangian is given by

L3 = (D.®)'DFe® — V(®)
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Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking
SU2)L XUQ)y = U(1)em

It is done through the introduction of complex scalar field

d+
P = <<I>O> , SU(2) doublet, Y(®)=1

e The SU(2)r X U(1)y gauge invariant Lagrangian is given by
L3 = (D.®)'DFe® — V(®)

where

V(®) = —p2dTd 4+ A\(T)2
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Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking
SU2)L XUQ)y = U(1)em

It is done through the introduction of complex scalar field

d+
P = <<I>0> , SU(2) doublet, Y(®)=1

e The SU(2)r X U(1)y gauge invariant Lagrangian is given by

L3 = (D.®)'DFe® — V(®)
where
i i,
V(®) = —p2dTd 4+ A\(T)2

e The SU(2)r X U(1)y invariant Yukawa interaction Lagrangian is given by
Li = Y.L®er+ YuQrPur + YuQ . ®dr + h.c

where & = iTo®* with Y (&) = —1
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Spontaneous Symmetry Breaking in the SM

For u2 > 0, the vacuum of this theory is spontaneously broken and the complex scalar field
acquires vacuum expectation value:

2

0
V2 A
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Spontaneous Symmetry Breaking in the SM

For u2 > 0, the vacuum of this theory is spontaneously broken and the complex scalar field
acquires vacuum expectation value:

0 2
|<Q|<I>|Q>|=<L> o= *
V2

If we parametrize ®(x) in terms of four real fields (®(x) : h(x), ¢ (x), ¢%(x), 3 (x)) as

0
®(x) = UT() <v+h(m)> : U(¢) = exp(—i¢(z) - 7/v)
V2
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Spontaneous Symmetry Breaking in the SM

For u? > 0, the vacuum of this theory is spontaneously broken and the complex scalar field
acquires vacuum expectation value:

0 2
|<Q|<I>|Q>|=<L> o= *
V2

If we parametrize ®(x) in terms of four real fields (®(x) : h(x), ¢ (x), ¢%(x), 3 (x)) as

0
®(x) = UT() <v+h(m)> : U(¢) = exp(—i¢(z) - 7/v)
V2

such that

< Q&N >=< Qh|2 >=10
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Spontaneous Symmetry Breaking in the SM

For u? > 0, the vacuum of this theory is spontaneously broken and the complex scalar field
acquires vacuum expectation value:

0 2
|<Q|<I>|Q>|=<L> o= *
V2

If we parametrize ®(x) in terms of four real fields (®(x) : h(x), ¢ (x), ¢%(x), 3 (x)) as

0
®(x) = UT() <v+h(w)> : U(¢) = exp(—i¢(z) - 7/v)
V2

such that
< Q6|2 >=< Q|h|2 >=0
The ¢; () fields can be gauged away by the unitary gauge transformations

U _ _ 0 _ v+ h(=x) _ (0O
e =U(Q)® = <v+\f/z§(m>> =~ X x—<1>
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Spontaneous Symmetry Breaking in the SM

For u? > 0, the vacuum of this theory is spontaneously broken and the complex scalar field
acquires vacuum expectation value:

0 2
|<Q|<I>|Q>|=<L> o= *
V2

If we parametrize ®(x) in terms of four real fields (®(x) : h(x), ¢ (x), ¢%(x), 3 (x)) as

0
®(x) = UT() <v+h(m)> : U(¢) = exp(—i¢(z) - 7/v)
V2

such that
< Q6|2 >=< Q|h|2 >=0
The ¢; () fields can be gauged away by the unitary gauge transformations

U _ _ 0 _ v+ h(=x) _ (0O
e =U(Q)® = <v+\f/z§(m>> =~ X x—<1>

® (;(x) are called Goldstone bosons (massless,spinless)
® h(x) is called the Higgs boson.
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Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

LY = u©L, eY =er

QY = Uv)Qr, u¥ =ugr, d¥ =dr
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Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

LY = u©L, eY =er

Qf = U)Qr, wugp=wur, dr=dr
The gauge fields in the unitary gauge are given by

U
1'AM

2

T'A“

_ U(C)( )U—I«) - g@tf(c))tf—l(c)

U
B“ = By
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Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

LY = u©L, eY =er
QY = Uv)Qr, u¥ =ugr, d¥ =dr

The gauge fields in the unitary gauge are given by

T-AY T~ )
2A“ = U(C)( A“)U_I(C) - E(GMU(C))U_I(C)
B = B,

Kinetic terms of gauge fields become
FZ'UF’I',[.LV . FIS'];LFUzMU

Gu.G* = G ,GYH*
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Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

LY = u©L, eY =er
QY = Uv)Qr, u¥ =ugr, d¥ =dr

The gauge fields in the unitary gauge are given by

T-AY T~ )
2A“ = U(C)( A“)U_I(C) - E(f’hU(C))U_l(C)
B = B,

Kinetic terms of gauge fields become

Fl’in’i[.l,V . FIS'];LFUzMU
U U
GuG* = GY,GU
where FUP = 8,AY¢ — 8, A" + ge'ik AT ATF

Gy, = 06uB] —08.B]
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Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian

Ls = (D.®)'DH® — V(D)
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Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian
Ls = (D.®)'DH® — V(D)

In the unitary gauge

D, ®

_ . .g’ v+ h(x
U 1(C)<8u—Z%T-Ag—z%BH)< \/5( )>X

by
V(®) = p?h?+ 2hd + Zh,‘l
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Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian
Ls = (D.®)'DH® — V(D)

In the unitary gauge

D, ®

_ . .g’ v+ h(x
U 1(C)<8u—ng-Ag—z%Bg)< \/5( )>X

by
V(®) = p?h?+ 2hd + Zh,‘l

The mass of the h field (Higgs boson) is given by

mi = 2u? = 2)\v?
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Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian
Ls = (D.®)'DH® — V(D)

In the unitary gauge

D, ® U~—1(¢) (a“ —i%T-Ag —i%Bf{) <v+h(w)>x

V2
2,2 3, AN a4
V(®) = wp°h”° + Avh +Zh

The mass of the h field (Higgs boson) is given by

m,zl = 2u? = 2)\v?

The Yukawa part of the Lagrangian in the Unitary gauge is given by

L4 = <h(‘i)/§+ ”) (Ye e’el Ly, ulul + vy E‘{d%) + h.c
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Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian
Ls = (D.®)'DH® — V(D)

In the unitary gauge

D, ® U—1(¢) (a“ —i%T-Ag —fz%'ij> <"+h(w)>x

V2
2,2 3, AN a4
V(®) = wp°h”° + Avh +Zh

The mass of the h field (Higgs boson) is given by

m,zl = 2u? = 2)\v?

The Yukawa part of the Lagrangian in the Unitary gauge is given by

h(x) + v _ . U
Ly = () YeePe? + Yo utul + Yy d.d% | + h.c
V2
The fermions masses and their interaction with h(x)
) . — .M
miz%, i =e,u,d, h(x)QQ — 1 Q Q=,b,t
2 v
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Masses of W= bosons

’02 h(iB) 2 g g’ g gl

= 7 (14 "2) (7feasn  capn] ¢ oz om0
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Masses of W= bosons

’02 h(iB) 2 g g’ g gl

_ % (1 N h(a;)>2 <92 [(Agl)z n (Agz)z] n [gAgs . g’Bf{)ﬂ)

Defining —— 1
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Masses of W= bosons

’02 h(iB) 2 g g’ g g/

_ % (1 N h(a;)>2 <92 [(Agl)z n (Agz)z] n [gAff’ . g’BH)ﬂ)

Defining n 1
Wo = 5
2

the h(x) independent term gives

(AT FiA]?)

2,,2

98’0 [(Agl)z _l_(Agz)z] (1_|_ %@)2 N gZSUZWIj_W_p, (1_|_ hg)a:)>2
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Masses of W= bosons

’02 h(iB) 2 g g’ g g/

_ % (1 N h(a;))z <92 [(Agl)z n (Agz)z] n [gAgs . g’Bf{)ﬂ)

v
Defining 1
+ U1l - A U2
WIJ' — E(A”' :F,I’A[,L )
the h(x) independent term gives
2,2 2 2.2 2
gv U1ly2 U2\2 h(x) g-v ) h(x)
- [(AM)+(AH)]<1-|-—U> = T Wiw 14+ =
where the mass of W= boson is given by
2’02 N
v = M2,
The vertices are
+ — M‘%V + — M‘%V
h(z)WIW—F — 2i—gu., h(z)h(z)W,W™F — 2i—*gu.
v (¥

- p. 20/31



Masses of Z boson and photon

N

(14 MDY gag —gmgyr = 2 (14 2O (age By (2, %) (Gon)

v
8 v

8
2 a0 (57 0) (3)
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Masses of Z boson and photon

N

v? h(z)* v h(x)\* g> —gg’\ (AUSH
? (1 + T) (QA;I{S o g/BE)z — (1 + v ) (AES BE) (_gg/ g2 ) (BUu,>

8
= 3@ a0 ("¢ ) (A)

where we have redefined the fields as

Z, = cos OWAE:; — sin OWBL] 60w — Weinberg angle
/
sin t9vag3 + cos OWBL] , tan Oy = g—,
g

Ap
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Masses of Z boson and photon

N

2 2
% (1_|_ @) (QAES _9133)2 —

where we have redefined the fields as

Z, = cos OWAE:; — sin OWBL]

Ay sin t9vag3 + cos OWBL] ,

In terms of new fields Z,, and A,,, we find

f( AU3 _ /BU)2 —
5 (94,° —9'B) =

h(x)

(Y
(14

8
= 3@ a0 ("¢ ) (A)

1 1
M2 z+ZzZ —
2 % b 2

2 gz
) g B (9

60w — Weinberg angle

4

tan Oy —= g—,

g

«“Q” Ay,AM

Bl

AU3u,
BUH
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Masses of Z boson and photon

N

v? h(xz)\? v h(z)\? g2
§<1+T> (94,7 —a'By)" = <1+ v ) S (—gg’

8
= 3@ a0 ("¢ ) (A)

where we have redefined the fields as

Z, = cos OWAES — sin OWBE 60w — Weinberg angle
/

A, = sin t9vag3 + cos OWBE , tan Oy = g—,
g

In terms of new fields Z,, and A,,, we find

2 1 1
S @AP —g'B)? = _MZZVZu+ o 0" AuA¥

where the masses of the Z boson and the photon A,, are given by

2 ’
M3z = % (g° + g ?), Ma =0

Bl

AU3M
BUH
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Masses of Z boson and photon

N

v? h(z)* v h(x)\* g> —gg’\ (AUSH
§<1+T> (94" = 9'Bu)" = <1+ v ) (4" B (—gg’ g? )(BW)

8
= 3@ a0 ("¢ ) (A)

where we have redefined the fields as

Z, = cos OWAES — sin OWBE 60w — Weinberg angle
/
A, = sin t9vag3 + cos OWBE , tan Oy = g—,
g

In terms of new fields Z,, and A,,, we find

2 1 1
S @AP —g'B)? = _MZZVZu+ o 0" AuA¥

where the masses of the Z boson and the photon A,, are given by

2 ’
M3z = % (g° + g ?), Ma =0

2 2
M2 M2

h(x)Z,Z" — 21 Juv, h(zx)h(x)Z, Z" — 21
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Counting number of degrees of freedom

e SU(2)r X U(1)y gives 4 massless gauge fields (A’f“ B,, i =1,2,3).
e Couplex scalar doublet had four real scalar fields (¢*, h(x),i = 1, 2, 3).

e After SSB and unitary gauge transformation, ¢* become massless modes and h(x) has
become massive mode.

e The three massless modes ¢* become longitudinal components to A;’;, B,,, transforming
them to massive vector bosons W=, Z and one massless vector boson ~.

AL, Bu, =W W™, 7,y
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Counting number of degrees of freedom

e SU(2)r X U(1)y gives 4 massless gauge fields (AL, B,, i =1,2,3).
e Couplex scalar doublet had four real scalar fields (¢*, h(x),i = 1, 2, 3).

e After SSB and unitary gauge transformation, ¢* become massless modes and h(x) has
become massive mode.

e The three massless modes ¢* become longitudinal components to A;’;, B,,, transforming
them to massive vector bosons W=, Z and one massless vector boson ~.

AL, Bu, =W W™, 7,y

e Charged and neutral current interactions gives:

GFr g° —1 3
Gr _ — v =2"IG.2 ~ 246 GeV
V2 8M2, d

e = gsinOw

e Neutrino neutral current processes give sin? Oy, =~ 0.224 4+ 0.015,implies:
1

1 e? 2 1 37.3 GeV
My = - - = -
2 \V2GFr sin Ow sin Ow
1
1 e? 2 1 74.6 GeV
Mz = = - =
2 \V2GFr sin 20w sin 20w

® {gaglaﬂza)\a YanU9Yd} — {easin0W9MW9 mp 9me,mu,md}
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e After SSB and unitary gauge transformation, ¢* become massless modes and h(x) has
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e The three massless modes ¢* become longitudinal components to A;’;, B,,, transforming
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Counting number of degrees of freedom

e SU(2)r X U(1)y gives 4 massless gauge fields (AL, B,, i =1,2,3).
e Couplex scalar doublet had four real scalar fields (¢*, h(x),i = 1, 2, 3).

e After SSB and unitary gauge transformation, ¢* become massless modes and h(x) has
become massive mode.

e The three massless modes ¢* become longitudinal components to A;’;, B,,, transforming
them to massive vector bosons W=, Z and one massless vector boson ~.

AL, Bu, =W W™, 7,y

e Charged and neutral current interactions gives:

GFr g° —1 3
Gr _ — v =2"IG.2 ~ 246 GeV
V2 8M2, d

e = gsinOw

e Neutrino neutral current processes give sin? Oy, =~ 0.224 4+ 0.015,implies:
1

1 e? 2 1 37.3 GeV
My = - - = -
2 \V2GFr sin Ow sin Ow
1
1 e? 2 1 74.6 GeV
Mz = = - =
2 \V2GFr sin 20w sin 20w

® {gaglaﬂza)\a YanU9Yd} — {easin0W9MW9 mp 9me,mu,md}
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Bound on Higgs mass from Unitarity

e Consider Wi"WL_ — Wi"WL_ scattering process. The amplidute of the process in terms
of spin-| partial wave is

M = Z M, where M; = 167w (2l + 1)P;(cos 0)aq,
=0
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Bound on Higgs mass from Unitarity

e Consider ijrWL_ — WjWL_ scattering process. The amplidute of the process in terms
of spin-| partial wave is

M = Z M, where M; = 167w (2l + 1)P;(cos 0)aq,
=0

e The cross section at c.m energy /s is given by

167
U:ZU“ where o] = T(2l+]—)|al|2
l
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Bound on Higgs mass from Unitarity

e Consider WELW_ — WE’WE scattering process. The amplidute of the process in terms
of spin-| partial wave is

M = Z M, where M; = 167w (2l + 1)P;(cos 0)aq,
=0

e The cross section at c.m energy /s is given by

16
o= Zal, where o = —ﬂ-(2l + 1)|a;|?

e Conservation of probability gives perturbativity rule:

1
|Re(ay)| <

e When s > M3, m?, ap — —m3? /(87v?)

m?2 1
‘— h §5 =—> my < 2vV/7T = 870GeV

8mv2
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Bound on Higgs mass from Unitarity

e Consider WELW_ — WE’WE scattering process. The amplidute of the process in terms
of spin-| partial wave is

M = Z M, where M; = 167w (2l + 1)P;(cos 0)aq,
=0

e The cross section at c.m energy /s is given by

16
o= Zal, where o = —ﬂ-(2l + 1)|a;|?

e Conservation of probability gives perturbativity rule:

1
|Re(ai)| < -
2
e When s > M3, m?, ap — —m3? /(87v?)
2
1
_ Th <2 iy, < 2007 = 870GeV
8mv2| — 2

e Combined analysis with similar longitudinal scattering processes gives the upper bound on
higgs mass m;, < 710 GeV.
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Bound on Higgs mass from Landau pole

® Finiteness of A coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

d 3
2 2 2
—A = ——A
F‘Rd > (IJR) A2 (NR)
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Bound on Higgs mass from Landau pole

® Finiteness of A coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

d 3
2 2 2
— = ——A
MRd > (L) A2 (LR)
The solution
Q32
Q%) = (o)

2
1= 222 M(QF) log 3z
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Bound on Higgs mass from Landau pole

® Finiteness of A coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

d 3
2 2 2
— = ——A
MRd > (L) A2 (LR)
The solution
Q32
Q%) = (o)

2
1= 222 M(QF) log 3z

e The Landau pole gives the scale A p given by (choose Q = Ap, Qo = v)

A ( 2702 ) 4202
P P 3 (v?) P 3m3

-p. 24/31



Bound on Higgs mass from Landau pole

® Finiteness of A coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

d 3
2 2 2
— = ——A
MRd > (L) A2 (LR)
The solution
Q32
Q%) = (o)

2
1= 222 M(QF) log 3z

e The Landau pole gives the scale A p given by (choose Q = Ap, Qo = v)

A ( 2702 ) 4202
P P 3 (v?) P 3m3

o If Ap = 1019 GeV, the higgs has to be light m;,, < 145 GeV.
e If Ap = 103 GeV, the higgs has to be heavy m;, < 750 GeV.
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Bound on the Higgs mass from Perturbativity

® |ncluding gauge and Yukawa couplings, the RG equation for A is given by

d\ 1 m?2 m? 3 ’ 3

2 2 n t 2 2

L = 122\ 4+ 12— A—12—— — —)\(3 -+ + —
Rdqu 1672 ( v2 vd 2 (39 g°) 16

(29 %+ (g2 + 92)2)>
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Bound on the Higgs mass from Perturbativity

® |ncluding gauge and Yukawa couplings, the RG equation for A is given by

o dA 1 m?2 m4
HRr

3
= o (123 1212 - Daag 1 gt + 2 % 2 + (5" +g)))
R

® |nthelimit A << m¢/v, g1, g2, we find

Q2

A(Q%) = A(v

L (—12TE 220 67 e e L
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Bound on the Higgs mass from Perturbativity

® |ncluding gauge and Yukawa couplings, the RG equation for A is given by

o dA 1 m?2 mi
KR

3
= o (123 1212 - Daag 1 gt + 2 % 2 + (5" +g)))
R

® |nthelimit A << m¢/v, g1, g2, we find

2
(12 ™4 S (20 4 (o +9%) ) log 2y
v

Q%) = A(v
e Bounded vaccuum requires A > 0, which implies (m? = 2\v?)

Q2

4
2 (Y

2
m; > ( 12T:t-|— (29'* + (g2 +92)2)> log

82
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Bound on the Higgs mass from Perturbativity

® |ncluding gauge and Yukawa couplings, the RG equation for A is given by

a1
dup? 1672

o o m?2 m4 3
KR (12>\ +12—t>\ 12———>\(3g +g)+ (g + (g'? +g))>

® |nthelimit A << m¢/v, g1, g2, we find

Q2

A(Q%) = A(v

L (—12TE 220 67 e e L

e Bounded vaccuum requires A > 0, which implies (m? = 2\v?)
’02 m4 2
mp, > ( 12 vt + 7 (29 +(g2+ 92)2)> log 3 Q

82

e Choosing@Q = Ag,

As =~ 103GeV — my > 70GeV
Ag =~ 10'¢GeV —> my > 130GeV
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Bounds on the mass of Higgs boson

00
o
o

600 175 GeV
o (M;) = 0.118

400

My [GeV]

200

0 1 | | | | | | | | | ]
103 109 1092 1012 1015 1018
A [GeV]
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Bounds on the mass of Higgs boson

600 m, = 175 GeV —
= ~
o o (M,) = 0.118
= 400 | —

= B _|
200 [— —

0 1 | | | | | | | | | ]

103 106 109 101R 1015 1018
A [GeV]

e The upper curve results from demanding perturbativity of the coupling A upto the scale A
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e The lower curve comes from demanding positive value for coupling upto the scale A
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Bounds on the mass of Higgs boson
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e The upper curve results from demanding perturbativity of the coupling A upto the scale A

e The lower curve comes from demanding positive value for coupling upto the scale A
(potential has to be bounded from below giving vacuum stability)

Spread in the lines is due to theory uncertainities.
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nggs Mass [Summer 2004, LEPEWWG]

Direct:

Direct: e LEPis aete collider with

V3 = 209 GeV

e Primary search mode ete™ — hZ

e On-shell higgs can be produced if the
mass of the higgs is greater than

myp > 114.4 GeV Vs — Mz = 118 GeV

e |ow statistics and insufficient energy
available gives the lower bound
myp > 114.4 GeV
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Indirect:

mp, = 114.475 GeV at 95% CL.
mp < 260 GeV (95% CL)
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Indirect:

Indirect:

e Higgs can contribute to many
electroweak observables that are
measured at LEP

e They can enterin W and Z self
energies at one loop level.

® The mass of the higgs appears
through its propagator and
kinematics

® The effects manisfest as
mp, = 114.475 GeV at 95% CL. log(mp /Mew) terms

® Precision electroweak fit can give
mp, < 260 GeV (95% CL) allowed Higgs mass range.
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W= mass and sin? Oy
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W= mass and sin? Oy
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® Precise meausurement of mass of the W boson
e sin? Oy from Forward back asymmetry and charge asymmetries

e |ower bound mp < 260 GeV (95% CL)
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[Summer 2004, LEPEWWG]

Higgs Mass

Measurement Fit |O™@-0™|/gmeas

1.2 3
m,[GeV] 91.1875+0.0021 91.1874
r,[GeV]  2.4952+0.0023 2.4959
o.q[Nb]  41.540+0.037  41.478
R, 20.767+0.025  20.742
A 0.01714 + 0.00095 0.01646
AP, 0.1465+ 0.0032  0.1482
R, 0.21629 + 0.00066 0.21579
R, 0.1721+0.0030  0.1722
AP 0.0992 + 0.0016  0.1039
A 0.0707 £+ 0.0035  0.0743
A, 0.923 + 0.020 0.935
A, 0.670 + 0.027 0.668
A(SLD) 0.1513+0.0021  0.1482
sin"0P(Q,) 0.2324+0.0012  0.2314
m,, [GeV] 80.399+0.023  80.378
ry [GeV] 2.085 + 0.042 2.092
m, [GeV]  173.20 % 0.90 173.27

July 2011 1 2 3
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my, , « are the parameters of the

standard model
Minimise

(O (mp, ) — OF"P")?

x> =)

1

x2/d.o.f =~ 1 implies that SM is

compatible with data.

(AOZ*PT)2
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nggs Mass [Summer 2004, LEPEWWG]

Indirect;

mp < 260 GeV (95% CL)

Ax*(mp, ) = X (Mhy T) = Xonin

o Ax? < (1.96)2 gives 95% CL
allowed mass range for higgs mass
mp,.

® The lower limit my, is much smaller

than direct limit and the upper limit is
myp > 200 GeV.
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[Summer 2004, LEPEWWG]

Higgs Mass
Indirect: h 6 March 2012 _ My imit = 152 GeV
5 Aap), =
— 0.02750+0.00033
1 WA : 0.02749+0.00010
mp, < 260 GeV (95% CL) 4 - =+ incl. low Q” data
C\l>< |
3 3
A 27
X (mh? w) - X (mh9 -’E) Xm'[,'n, i
e Ax? < (1.96)2 gives 95% CL 1-
allowed mass range for higgs mass JLEP LHC
mp,. 0 excluded A excluded
® The lower limit my, is much smaller 40 100 200

than direct limit and the upper limit is
my, > 200 GeV. m, [GeV]
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Higgs Mass

Indirect;

mp < 260 GeV (95% CL)

AX (mh? w) - X (mh9 -’E) Xm'[,'n,

e Ax? < (1.96)2 gives 95% CL
allowed mass range for higgs mass
mp,.

® The lower limit my, is much smaller
than direct limit and the upper limit is
myp > 200 GeV.

114.4 < mp < 260 GeV at 95% CL.

[Summer 2004, LEPEWWG]

6 March 2012
° K

lelt

= 152 GeV

5 Aapy =
— 0.02750+0.00033

1 "\:: - 0.02749+0.00010
4 - -« incl. low Q? data
3 —
2 —
1 —

{LEP LHC
0 excluded A excluded

' ' T
40 100
m,, [GeV]

200
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