Heavy Flavor at the Tevatron

- In ~10 years of data-taking Tevatron's experiments pioneered and established the study of HF physics in hadron collisions
 - Unique access to B_s physics
 - World-leading rare decays searches
 - World leading masses/lifetimes
 - b-baryons discoveries
 - Precision CPV/mixing in charm

The Tevatron has shown one can do precision b-physics at a hadron collider!

Status

- Over past decade, dedicated experiments, theory and computational advances have achieved formidable success
- Ths SM explains satisfactorily data in leading B transitions to within 10%
- Some of the most promising probes are just now being explored. Many of these probes are only accessible in hadron collisions (B_s physics, high statistics FCNC decays, precision charm....)
- That is what motivates heavy flavor physics at the worlds colliders

Tevatron Heavy Flavor

- 2 experiments
- 10¹³ ppbar collisions at 2 TeV in 10 years
- 0.1 1% of them yield B/D's
- We are able to get 0.1 10% of these on tape
- High rate of all species of heavy flavors. Higher than B factories (though lower than LHCb)
- Symmetric detectors and CP-invariant initial state ensure equal number of particles and antiparticles in acceptance

How do we do it?

- 1 KHz of reconstructable b-pairs (pt 5-10 GeV)
- Trigger: single lepton and dilepton as well as tracks displaced from primary ppbar vertex

- Degraded efficiency at high luminosity
 Significant bias on kinematics and decay-time
- Tracking: $\sigma(Pt)/Pt^2 = 0.1\%$. Vertex known within 20 µm. Good muons and some particle ID (1.5 σ)
- Usually all charged final states. Absolute efficiencies are normalized with reference decays. Simulation ony used for kinematics
- Analysis challenges: determining quark flavor at production, sample composition of overlapping signals etc

B Mesons

${\sf B}_{\sf s}$ Mixing and ${\sf \Delta}{\sf m}_{\sf s}$

 $\Delta m_s \sim V_{ts}$

- Measuring the oscillation frequency, Delta M_s, of the Bs system has been a major objective of experimental particle physics.
- Can use Delta(ms) to get the magnitude of the Vts and set limits on the CKM matrix.
- This is a very experimentally challenging measurement.

• Neutral B Meson system

$$B >= (\overline{b}s); |\overline{B} >= (b\overline{s})|$$

mixture of two mass eigenstates (No CP violation case):

$$\left| B_{H} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| B \right\rangle + \left| \overline{B} \right\rangle \right)$$
$$\left| B_{L} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| B \right\rangle - \left| \overline{B} \right\rangle \right)$$

- B_H and B_L may have different mass and decay width
 - $\Delta m = M_H M_L$ (>0 by definition)
 - $\Delta \Gamma = \Gamma_{\mathsf{H}} \Gamma_{\mathsf{L}}$

$$p(B \to B) = rac{e^{-t/ au}}{2 au} (1 + \cos \Delta m t)$$

 $p(B \to \overline{B}) = rac{e^{-t/ au}}{2 au} (1 - \cos \Delta m t)$

Standard Model Prediction

Ratio of frequencies for B⁰ and

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^2 B_{Bs}}{f_{Bd}^2 B_{Bd}} \frac{|V_{ts}|^2}{|V_{td}|^2} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

= 1.210 ^{+0.047} from lattice QCD (hep/lat-0510113)

 $V_{ts} \sim \lambda^2$, $V_{td} \sim \lambda^3$, $\lambda = 0.224 \pm 0.012$

Unitarity Triangle

CKM Matrix Unitarity Condition

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

The "Big" Picture

- reconstruct B_s decays ! decay flavor from decay products
- measure proper time of the decay (very precisely)
- infer B_s production flavor (production flavor tagging)

Measurement .. In a Perfect World

Realistic Effects

All Effects Together

Real Measurement Layout

Triggering On Displaced Tracks

trigger $B_s ! D_s^- \pi$, $B_s ! D_s^- l^+$

trigger extracts 20 TB /sec "unusual" trigger requirement: two displaced tracks: (p_T > 2 GeV/c, 120 μm<|d₀|<1mm) requires precision tracking in SVX

Example Mass Spectrum

partially reconstructed B mesons (satellites)

Signal Yield Summary: Hadronic

	Yield
B _s ! D _s π (φπ)	1600
$B_{s}! D_{s}\pi (K^{*} K)$	800
B _s ! D _s π (3π)	600
B _s ! D _s 3π (φ π)	500
B _s ! D _s 3π (K [*] K)	200
Total	3700

B_s Mixing and Δm_s

$\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$

BSM Physics in Mixing

- BSM Physics can alter mixing phenomenology from SM expectation
- Our 2006 mixing measurement (just showed) is consistent with SM expectation (within lattice uncertainties)
- Mixing Phase is unconstrained

 Large New Physics effects are still possible
- New Physics is accessible through interference between Bs->J/Ψφ decay with and without flavor oscillations

Measurement Outline

Bs -> J/Y Ø Result

 Consistent with SM ~1σ arXiv:1109.3166 (accepted by PRD)

NEW result using full data!
 Consistent with SM <1σ

First measurements (2008) showed intriguing 2.2σ discrepancy

B-> µ µ

- SM rate is well understood
- SM rate is small 3.2 x 10⁻⁹
- Broad class of NP models w/new scaler operators) enhance it by 10x-1000x
- Experimental signature is very clean

Challenge: reject 10⁶ larger bckg. Keep signal efficiency high

The Analysis

Trigger on two muons with $p_T > 1.5 - 2 \text{ GeV/c}$

NN classifier separates S from B

Bckg predicted using mass sidebands (comb.) and fake rates for B→hh. Checked on many control samples

> Look at search region in bins of mass and NN. Rate determined using $B^+ \rightarrow J/\psi K^+$ as reference

B⁰ Results

- Divide signal region by NN discriminant
- Estimate BG from each mass sideband

8s -> 📙 🛄

Summer excess not reinforced by new data, but still there Observe a 2σ fluctuation over BG – so we quote a BR

BR(B_s $\rightarrow \mu^{+}\mu^{-}$)=(1.3^{+0.9}-_{0.7}) × 10⁻⁸ 0.8 × 10⁻⁹<BR(B_s $\rightarrow \mu^{+}\mu^{-}$) <3.4 × 10⁻⁸ 95% C.L.

New Physics Shows Up Throughout

Observation of new heavy baryons

W Boson Mass

Stark for the D0 Collaboration

Jan Stark for the D0 Collaboration

Fermilab Wine&Cheese semina

Fermilab Wine&Cheese seminar, March 1st 2012 Approaching 10 MeV uncertainty

The Bump!!!

Looking for a W boson and 2 quarks (jets)

The challenge

Number of events produced per experiment in 6 months of running

In 10 years, we've made about 500 Higgs in each experiment This is a hard way to make a living!

One experiment's channel combination

Four channels contribute almost equally in the interesting region need to improve all 4!

- ZH→llbb
- WH→I∨bb
- ZH→vvbb
- $H \rightarrow WW \rightarrow I_V I_V$
- Remaining channels have a combined weight of ~10%

Improving the analyses

adding more data

CDF Run II Preliminary

Improved b-tagger (CDF)

Improved dijet mass resolution (CDF)

Improved acceptance with track missing momentum (DØ)

Improved multivariate analysis techniques

Improved modeling of backgrounds (with verification using WW/WZ)

CDF and DØ Higgs Searches with Full Data Set

• Tevatron data are incompatible with background only hypothesis

 \bullet For full combination of searches p-values are 3.0 σ local or 2.5 σ with LEE factor

• For Higgs to bb channel p-values are 3.3σ local or 3.1σ with LEE factor

• Tevatron data are compatible with Standard Model Higgs boson production in the mass range $115 \text{ GeV} < M_H < 135 \text{ GeV}$ in all studied channels including H \rightarrow bb, H \rightarrow WW and H $\rightarrow \gamma\gamma$

CDF and DØ Higgs Searches with Full Data Set

Combine our three primary low mass search channels $WH \rightarrow IVbb$ $ZH \rightarrow VVbb$ $ZH \rightarrow IIbb$

For Higgs to bb channel p-values are

- 3.3σ local
- 3.1 σ with LEE factor

A remarkable discovery machine 🐄

1995 Top quark 1998 Bc meson **1999 Direct CP violation in Kaons** 2000 Tau neutrino 2006 B_s oscillations 2006 Sigma-b baryon 2007 Cascade-b baryon 2008 Omega-b baryon 2009 Single top quark production 2011 Xi-b baryon 2012 World's best W mass measurement 2012 Evidence for Higgs in bb

Accelerator Innovations

- First major SC synchrotron
- Industrial production of SC cable (MRI)
- Electron cooling
- New RF manipulation techniques

Detector innovations

- Silicon vertex detectors in hadron environment
- LAr-U238 hadron calorimetry
- Advanced triggering

Analysis Innovations

- Data mining from Petabytes of data
- Use of neural networks, boosted decision trees
- Major impact on LHC planning and developing
- GRID pioneers

Major discoveries

- Top quark
- B_s mixing
- Precision W and Top mass
 → Higgs mass prediction
- Direct Higgs searches
- Ruled out many exotica

The next generation

- Fantastic training ground for next generation
- More than 500 Ph.D.s
- Produced critical personnel for the next steps, especially LHC

Impacts of Particle Physics on Society

Medical Imaging

Bright x-rays Source Chemistry, Biology, Materials

Education

Computing and WWW

Silicon Based Technology

Industry

Accelerator Innovations

- First major SC synchrotron
- Industrial production of SC cable (MRI)
- Electron cooling
- New RF manipulation techniques

Detector innovations

- Silicon vertex detectors in hadron environment
- LAr-U238 hadron calorimetry
- Advanced
 triggering

Analysis Innovations

- Data mining from Petabytes of data
- Use of neural networks, boosted decision trees
- Major impact on LHC planning and developing
- GRID pioneers

Major discoveries

- Top quark
- B_s mixing
- Precision W and Top mass
 → Higgs mass prediction
- Direct Higgs searches
- Ruled out many exotica

The next generation

- Fantastic training ground for next generation
- More than 500 Ph.D.s
- Produced critical personnel for the next steps, especially LHC