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IIA. From Color to QCD

e Enter the Gluon
o If qbq/H(a:) — probability to find ¢ with momentum xp,
e then,
M, = %/01 dx © ¢4/ p(x) = total fraction of momentum
carried by quarks.
e Experiment gave
e What else? Quanta of force field that holds H together?

e ‘Gluons’ — but what are they?
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e Where color comes from.

¢ Quark model problem:

—8q = 1/2 = fermion = antisymmetric wave function, but

— (uud) state symmetric in spin/isospin combination for nu-
cleons and

— Expect the lowest-lying (X, €y, £4) to be symmetric

— So where is the antisymmetry?
¢ Solution: Han Nambu, Greenberg, 1968: Color
e b, g, v, a new quantum number.

e Here's the antisymmetry: €; ;.Y (Zy, Ty, Tq), (i.j,k)= (b,g,r)



¢ Quantum Chromodynamics: Dynamics of Color

e A globe with no north pole

Ob

'O
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e Position on ‘hyperglobe’ <+ phase of wave function
(Yang & Mills, 1954)

e We can change the globe’s axes at different points in space-
time, and ‘local rotation’ <+ emission of a gluon.

e QCD: gluons coupled to the color of quarks

(Gross & Wilczek; Weinberg; Fritzsch, Gell-Mann, Leutwyler, 1973)



lIB. Field Theory Essentials

¢ Fields and Lagrange Density for QCD

qs(x), f = u,d,c,s,t,b: Dirac fermions (like electron) but
extra (2,7, k) =(b, g, ) quantum number.

o A¥(x) Vector field (like photon) but with extra a ~ (gb...)
quantum no. (octet).

e L specifies quark-gluon, gluon-gluon propagators and
interactions.
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From a Lagrange density to observables, the pattern:

Fields Symmetries

AN Lagrangian 's

Perturbation Theory Rules

/

Green Functions
Renormalization ;

S - Matrix

'

Cross Sections

-
Observables




e UV Divergences (toward renormalization & the renormaliza-
tion group)

e Use as an example
Loyt = - (0u0)? — m20?) — "
¢t T g \TH A!
e The “four-point Green function”:
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Interpretation: The UV divergence is due entirely states of
high ‘energy deficit’,

— 0 0 7.2
FEin — Egtate S = P71 + P2 _iéSJki — m?

Made explicit in Time-ordered Perturbation Theory:

~ d*k . { 1 N 1 ]
(k2 — mz)((pl —+ P2 — ’{2)2 — m2) - states Ein — E1 Ein — Ei

Analogy to uncertainty principle AE — oo & At — 0.



e This suggests: UV divergences are ‘local’ and can be absorbed
into the local Lagrange density. Renormalization.

e For our full 4-point Green function, two new “counterterms’:

The renormalized 4-point function:

1

1 3
1 3 1 3
M) = X +>XCX + ¢ (T
e 2 4 2 4 3
2 4 2
counterterm + ><5)\

ISP D EPS
3O

e The combination is supposed to be finite.

counterterm



e How to choose them? This is the renormalization “scheme”

Renormalization:

om
§< + % = 0 (only natural choice)

12>©<j+§ +§Z +><‘6\9»=/fi(nite

But what should we choose for these?

A B C D

e For example: define A+B+C by cutting off  d*k at k? = A?
(regularization). Then

A2
A—I—B—I—C’:a,ln—l—b(s,t,u,mz)
S
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e Now choose:

so that
A4+B+C+ D :aln'u—l—b(s,t,u,mZ)
s

independent of A.

e Criterion for choosing p is a “renormalization scheme”:
MOM scheme: i = sg, some point in momentum space.
MS scheme: same u for all diagrams, momenta

e But the value of p is still arbitrary. ;1 = renormalization scale.

e Modern view (Wilson) We hide our ignorance of the true
high- E behavior.

e All current theories are “effective” theories with the same
low-energy behavior as the true theory, whatever it may be.
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¢ 11-dependence is the price we pay for working with an effective
theory: The Renormalization Group

e As 11 changes, mass m and coupling g have to change:
m=m(p) g =g(pn) “renormalized” but ...

e Physical quantities can’'t depend on pu:

d S;: m?
ua[ Ex z,g(u),u] =0
B

dp
e The ‘group’ is just the set of all changes in .
¢ ‘RG’ equation (Mass dimension (o] = ds):
o | Og O | om 0O
u@u u(‘?u dg H ou om

2
S;5 ™
Zga 279(“’)9”’]20
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g (1)
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The beta function: 3(g) = p
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e The Running coupling

e Consider any o (m = 0, ds = 0) with kinematic invariants

= (p; + pj)*:
“_o 07 _ B(g) 1
M = uau——(g)ag (1)
oin PT:
o =g (W + g4 o |7 L 1@ R 4 (2)
Skl p
¢(2)in (1) —
) = 290 4.
3__(2 3
_ 9T 5 — 9 5
Blg) =" @y t0O6°)=— . 3060+0(g")
e In QCD:

2n
Bo=11-""

e — B39 < 0 — g decreases as p increases.
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e Asymptotic Freedom: Solution for the QCD coupling

0g 3 Bo
H_— = —g 2
ou 167
dg  Bo du
gs 1672
1 1 Bo 2
2 9 = — . on
g“(n2) g<(p1) 16m= g
g?(u2) = g-(1m)
14 ;£9592(p1) In 2

e Vanishes for o — oo. Equivalently,

g°(p2) _ os(p1)
4 14 {00us(pa1) In 22

as(p2) =
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e Dimensional transmutation: Aqcp

— Two mass scales appear in

as(p1)
14 0ous(pa1) In 42

but the value of as(u2) can’t depend on choice of 7.

as(p2) =

— Reduce it to one by defining A = e—Po/ees(m1), indepen-
dent of 1. Then

47
as(p2) = 2
Bo lnX%
e Asymptotic freedom strongly suggests a relationship to the
parton model, in which partons act as if free at short dis-
tances. But how to quantify this observation?
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lIC. Infrared Safety and Jets

e To use perturbation theory, would like to choose u ‘as large
as possible to make as(p) as small as possible.

e But how small is possible?

e A “typical” cross section, , define Q% = s and

Tii = 8/ Q%

o Q x my as(p) ] OZO a
29ty o s o | = n
m n

=1

2 m32
? ) o™ (1)

9Ly

with mz2 all fixed masses — external, quark, gluon (=0!)

e Generically, the a,, depend logarithmically on their arguments,
so a choice of large u results in large logs of m%/p?.
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e But if we could find quantities that depend on mgs only
through powers, (m;/u)P,p > 0, the large-u limit would
exist.

Q  m? Q  m?
o zawz’jazza(XS(Q)a“ — 0 amijazzaa8(U)7“
I o o o
2P
n=q 9 uawzg ag(p) + [ 12

e Such quantities are called infrared (IR) safe.

e Measure o — solve for as. Allows observation of the running
coupling.

e Most pQCD is the computation of IR safe quantities.

17



e Consistency of as(p) found as above at various momentum

scales

Each comes from identifying an IR safe quantity, computing
it and comparing the result to experiment. (particle Data Group)

e To find IR safe quantities,

i

o

o,

10
u GeV

2
10

mass logs come from.

| Average

Hadronic Jets

+ -
e e rates

Z width
ep event shapes

Polarized DIS "

Deep Inelastic Scattefing (DIS)
_o_
t decays
Spectroscopy (La.tgce)
Y decay
_o_

Photo-production

Fragmentation

0.1 0.12
ocS(MZ)

need to understand where the low-
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e To analyze diagrams, we generally think of m — 0 limit in
m/Q. Gives “IR” logs.

e Generic source of IR (soft and collinear) logarithms:

. k~0
. , G000
G S N S S
o, =
- L0:0009090Q9
! . op

¢ IR logs come from degenerate states:
Uncertainty principle AE — 0 & At — oc.

e For soft emission and collinear splitting it’s “never too late”.
But these processes don’t change the flow of energy ...
Problems arise if we ask for particle content.
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e For IR safety, sum over degenerate final states in perturbation
theory, and don’t ask how many particles of each kind we have.
This requires us to introduce another regularization, this time
for IR behavior.

e The IR regulated theory is like QCD at short distances, but
is better-behaved at long distances.

¢ IR-regulated QCD not the same as QCD except for IR safe
quantities.
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e See how it works for the total e e~ annihjlation cross section
. 0) _
to order 5. Lowest order is 2 — 2,05 ' = o1,9, 03 starts
at order o.

— Gluon mass regularization: 1/k? — 1/(k? — mg)?

4 o 702 5
UémG) = oLo. 21n2Q— San_+
3 mg mg 6 9
UgmG) = o0 |1 B 21n2Q—31nQ__|_
which gives
Q
Otot = UgmG) + U:(amG) =o0 |1+ 778

— Pretty simple! (Cancellation of virtual (o) and real (os) gluon diagrams.)
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— Dimensional regularization: change the area of a sphere
of radius R from 47w R2 to (47)(1—¢) F(1=¢) ' R2—2¢ with

I'2(1—e))
e =2 — D/2 in D dimensions.
(€) 4og (1 —¢e)? A p?)*
73 T L0313 - 20)T(2 — 2¢)) | Q2
1 3 «% 19
Xg‘%‘z+4]
o8 = ool — o (1) Ay’
3w ((83—2e)'(2—2¢)) | Q2
1 3 x?
|27 o T

which gives again

Otot = UgmG) + U:g,mG) = 00 {1 + O:

e This illustrates IR Safety: o5 and o3 depend on regulator,
but their sum does not.
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e Generalized IR safety: sum over all states with the same
flow of energy into the final state. Introduce IR safe weight

‘e({pi})”

ZZ = > Ips(n) IM({pi})1?6 (e({pi}) — w)

with

€(cvePies Dj_1, AP Pjy1++:) =
e(...(1+a)p;...Pj_1,Pj+1---)
e Neglect long times in the initial state for the moment and

see how this works in eTe™ annihilation: event shapes and
jet cross sections.
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e “Seeing” Quarks and Gluons With Jet Cross Sections

e Simplest example: cone jets in eTe™ annihilation. All but
fraction ¢ of energy flows into cones of size 0.

)

o

¢ Intuition: eliminating long-time behavior < recognize the
impossibility of resolving collinear splitting/recombination of
massless particles
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e No factors Q/m or In(Q/m) Infrared Safety.

e In this case,

3
o27(Q,0,¢€) = 800(1 T cos” 0)

dog

72 5

T

e Perfect for QCD: asymptotic freedom — das(Q)/dQ < 0.

e No unique jet definition. <+ Each event a sum of possible
histories.

¢ Relation to quarks and gluons always approximate but correc-
tions to the approximation computable.
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e The general form of an eTe™ annihilation jet cross section:

Cn('yi, N, CF)O‘?(Q)

= >
;3 = 0
jet 0 0

e Dimensionless variables y; include direction and information
about the ‘size’ and ‘shape’ of the jet:

e ), cone size as above

e To specify the jet direction, may use a Shape variable, e.g.
thrust

T — —maxy, Z |ﬁ . ﬁzl = —ImaXgy ZEZ | COS 0i|
S 3 S ¢

with 8; the angle of particle 7z to the “thust” axis, which we
can define as a jet axis.

o I' =1 for “back-to-back” jets.
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T = —maxy > E; | cos 6]
S i

e The thrust is IR safe precisely because it is insensitive to
collinear emission (split energy at fixed 6;) and soft emission

(E; = 0).

e Once jet direction is fixed, we can generalize thrust to any
smooth weight function:

T[f] = > E; f(6;)

particles 2 in jets

e Using thrust to define a jet axis is useful mostly to describe
two, back-to-back, jets (no wide-angle gluon emission — the
majority, but by no means all events in eTe™).

27



e The distribution as seen at high energies, compared
to experiment (Davison & Webber, 0809).

1/0 dodt

1/0 dodt

1/0 dodt

Fig. 3. Fixed-order (NNLO), resummed (NNLO+NLL) and
experimental thrust distributions: @ = 189 — 207 GeV.

e Strongly peaked near, but not at, T' = 1, due to radiation.
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e For possibly multi-jet events, “cluster algorithms™.

¢ Ycut Cluster Algorithm: Combine particles ¢ and 7 into jets
until all Yij > Ycut where (e.g., “Durham alogrithm” for
eTe™):
Y;j = 2min (Ezz, EJZ) (1 — cos 0,,;3->

e The number of jets depends on the variable y.,t, and the
dependence on the number of jets was an early application of
jet physics. (Reproduced from Ali & Kramer, 1012)

100
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.
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e To anticipate: for hadronic collisions, jets are only well-defined
away from the beam axis, so (instead of energy, E;) use kine-
matic variables defined by the beam directions:
transverse momentum, azimuthal angle and rapidity:

k
@

1 E—I—p3)
y=—In

2 E — p3

e The beams define the ‘3-axis’.
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e Cluster variables for hadronic collisions:

A%
. 2 2
d;; = min (kt,,?, ktgp) Rzzg

Azzj = (y; — yj)2 + (¢; — ¢j)2. R is an adjustable parameter.

e The “classic” choices:

—p =1 “k; algorithm:
—p = 0 “Cambridge/Aachen”
—p = —1 "“anti-k¢"
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Summarize: what makes a cross section infrared safe?

¢ Independence of long-time interactions:

. k~0
. . ) ,6675 000
i LA g
N, r
- L090090909
. ' ap

More specifically: should depend on only the flow of energy
into the final state. This implies independence of collinear

re-arrangements and soft parton emisssion.

But if we prepare one or two particles in the initial state (as in
DIS or proton-proton scattering), we will always be sensitive
to long time behavior inside these particles. The parton model
suggests what to do: factorize. This is the subject of Part Ill.
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