Vector bosons and direct photons

Lecture 2

John Campbell, Fermilab

Outline of lectures

- Overview of vector boson basics.
- Underlying theory of W,Z production.
- Discussion of the direct photon process.
- Di-photon production.
- The importance of multi-boson production.
- Review of selected di-boson phenomenology.
- Beyond inclusive di-boson measurements.

Weak boson self-interactions

- Now turn to multiple production of vector bosons, with at least one W or Z.
- These have an essentially different character from di-photon production because of self-interactions.
- Probes of triple couplings:
 - di-boson production
 - single production through VBF
- Probes of quartic couplings:
 - tri-boson production (and beyond)
 - di-boson production in VBS
- Rich structure predicted by the SM Lagrangian to explicitly test in all these processes.

The special role of self-interactions

 To illuminate the special role self-interactions play, consider the reaction e⁺e⁻→W⁺W⁻ at a lepton collider.

- Choose frame in which the W 3-momenta are in the *z*-direction:
- Polarization vectors of W (ϵ .q = 0, ϵ^2 = -1):

 $\epsilon^{\mu} = (0, 1, 0, 0), \quad \epsilon^{\mu} = (0, 0, 1, 0)$

transverse (c.f. photon)

$$\epsilon^{\mu}_{\pm} = \frac{1}{m_W} \left(q, 0, 0, \pm E \right)$$

 $E^2 - q^2 = m_W^2$

 $q_{\pm} = (E, 0, 0, \pm q)$

longitudinal (massive bosons)

- Longitudinal mode means diagrams grow as $E^2 \rightarrow$ focus on this limit.
 - in that case can study longitudinal modes by approximating $\epsilon^{\mu}_{\pm} \rightarrow \frac{1}{m_{\pi\pi}} q_{\pm}$

Longitudinal contribution

• Contribution from first diagram:

$$M = \frac{(-ig_w)^2}{8} \bar{v}(-p_+) \not \in (q_+)(1-\gamma_5) \frac{i}{\not p_- - \not q_-} \not \in (q_-)(1-\gamma_5) u(p_-)$$

• Using longitudinal polarization and keeping only leading term:

(via equation of motion)

• Useful to rewrite using momentum conservation:

$$M = -i rac{(-ig_w)^2}{8M_W^2} ar{v}(-p_+)({\not\!\! q}_+ - {\not\!\! q}_-)(1-\gamma_5)u(p_-)$$

Self-coupling contributions

- Triple-boson vertex: $V^{\alpha\beta\delta}(p,q,r) = g^{\alpha\beta}(p^{\delta}-q^{\delta}) + g^{\beta\delta}(q^{\alpha}-r^{\alpha}) + g^{\delta\alpha}(r^{\beta}-p^{\beta})$
- Contracted with longitudinal polarizations here:

(discard h.o. terms)

$$V^{lphaeta\delta}(q_++q_-,-q_-,-q_+)arepsilon_eta(q_-)arepsilon_\delta(q_+) = -rac{(q_++q_-)^2}{2M_W^2} \Big[q_+^lpha - q_-^lpha\Big] + O(1)$$

Self-coupling contributions

• Similar contribution from third diagram:

vector and axialcouplings from before

$$\begin{array}{lcl} M & = & \frac{(-ig_w)(ig_w)}{2} \bar{v}(-p_+) \gamma^{\rho} (V_e - A_e \gamma_5) u(p_-) \frac{-ig_{\rho\alpha}}{(q_+ + q_-)^2 - M_Z^2} \\ & \times & V^{\alpha\beta\delta}(q_+ + q_-, -q_-, -q_+) \varepsilon_{\beta}(q_-) \varepsilon_{\delta}(q_+) \end{array}$$

• Hence, combining second and third diagrams:

$$M = -i \frac{(-ig_w)^2}{4M_W^2} \bar{v}(-p_+)(\not q_+ - \not q_-) \left[2Q_e \sin^2 \theta_W + V_e - A_e \gamma_5 \right] u(p_-)$$

(discarding non-leading terms)

Total in the high-energy limit

$$M = -i \frac{(-ig_w)^2}{8M_W^2} \bar{v}(-p_+)(\not{q}_+ - \not{q}_-) \left[1 + 4Q_e \sin^2 \theta_W + 2V_e - (1 + 2A_e)\gamma_5\right] u(p_-)$$

• Recall definitions of Z couplings: $V_e = -\frac{1}{2} - 2Q_e \sin^2 \theta_W$, $A_e = -\frac{1}{2}$

to see that the leading high-energy behaviour is cancelled.

- due to the relationship between the coupling of the W,Z and photon to fermions and the triple-boson couplings
- equivalently, due to the underlying gauge structure of the weak sector of the Standard Model.
- imperative to test at hadron colliders.

Strength of high-energy cancellation

• Full result including sub-leading terms.

Di-boson production at hadron colliders

Single-resonant diagrams

• Modern calculations of di-boson processes include effects of decays; in that case, EW gauge invariance requires that additional diagrams are included.

Vector bosons and direct photons - John Campbell - 11

m_{4ℓ} (GeV)

Gluon-induced contributions

 Just like di-photon production, part of NNLO contribution to WW and ZZ production is numerically relevant at the LHC.

ZZ: small below Z pair threshold (e.g. H search), but large above; will be bigger at 14 TeV. WW: impact of gg contribution enhanced by H analysis cuts such as low dilepton invariant mass

Photon radiation in decays

 For Wγ and Zγ production it is essential to account for the effect of photon radiation from the products of the W or Z decay.

- required by EM gauge invariance unless dileptons confined to resonance region → not always easy to enforce experimentally
- effect can be dramatic: $\sigma(e^+\nu\gamma) \neq \sigma(W^+\gamma) \times \operatorname{Br}(W^+ \to e^+\nu)$

	Decay	Cuts	$\sigma^{LO}(e^+ \nu \gamma)$	$\sigma^{NLO}(e^+ \nu \gamma)$
W on-shell (no FSR)	No FSR	Basic γ	4.88	8.74
		$M_T { m cut}$	1.99	3.78
		Lepton cuts	1.49	2.73
W off-shell (includes FSR)	Full	Basic γ	23.0	30.1
		M_T cut	2.12	3.94
		Lepton cuts	1.58	2.85

difference reduced by transverse mass cut $M_T(\ell \gamma, \nu) > 90 \text{ GeV}$

→ little room left to radiate in decay

W+photon amplitude

• Consider the lowest order partonic process (4-momenta in brackets):

 $\bar{u}(p_1) + d(p_2) \rightarrow W^+ + \gamma(p_3)$

• The helicities of the quarks are fixed by the W coupling but we can choose a positive helicity photon. Up to an overall factor amplitude is:

$$Q_u rac{[2\,3]}{\langle 1\,3
angle} + Q_d rac{[1\,3]}{\langle 2\,3
angle}$$

 $Q_u = 2/3$ and $Q_d = -1/3$

(and we have used $Q_e=Q_d-Q_u$ to simplify)

• Convert back to more-familiar dot products by extracting overall spinor factor:

$$\frac{[2\,3]}{\langle 1\,3\rangle} \left(Q_u + Q_d \,\frac{p_1 \cdot p_3}{p_2 \cdot p_3} \right) \qquad (\text{recall}, \,\langle i \,\, j\rangle [j \,\, i] = 2p_i \cdot p_j)$$

- Can now evaluate in the partonic c.o.m. Assume the down quark has a positive z component and denote the angle between it and the photon by θ^* .
- Amplitude thus proportional to: $Q_u(1 + \cos \theta^*) + Q_d(1 \cos \theta^*)$

Radiation amplitude zero

• Amplitude vanishes at the scattering angle given by:

 $\cos \theta^{\star} = \frac{Q_u + Q_d}{Q_d - Q_u} = -\frac{1}{3}$ (independent of parton energies)

- This feature is characteristic of all helicity amplitudes for the emission of photons in multi-boson processes.
- "Radiation amplitude zero" (RAZ) the result of interference between diagrams.
- Easy to calculate the corresponding photon rapidity:

$$y_{\gamma}^{\star} = rac{1}{2} \log \left(rac{1 + \cos \theta^{\star}}{1 - \cos \theta^{\star}}
ight) pprox -0.35$$

- Rather than reconstructing all objects and trying to boost back to c.o.m, easiest to construct a (boost invariant) rapidity difference: $\Delta y^* = y^*_{\gamma} y^*_W$.
- For small photon p_T relative to m_W the W rapidity in the c.o.m. is approximately: $y_W^{\star} \approx \frac{1}{2} \log \left(\frac{m_W - p_T^{\gamma} \cos \theta^{\star}}{m_W + p_T^{\gamma} \cos \theta^{\star}} \right)$

Position of zero

- Expanding for small p_T gives: $y_{\gamma}^{\star} \approx \frac{p_T^{\gamma,\min}}{3m_W}$
- Hence the corresponding zero in the W rapidity distribution is positive, but at a significantly smaller value.
- Rapidity difference, e.g. for typical experimental cuts at 20 GeV: Δy^{*} ≈ -0.45 (for the sub-process we looked at: ūd → W⁺γ).
- Tevatron: quark and anti-quark directions coincide with those of protons and anti-protons, to first approximation.
 - prediction for the radiation zero derived above should be reproduced approximately once pdfs are folded in;
 - however this pdf dilution means that we do not obtain exact vanishing of the distribution but instead a pronounced dip.
- LHC: no well-defined direction for protons, so RAZ should be at $\Delta y^*=0$.

Radiation zero with pdf effects

expected position of RAZ

→ partially washed out at higher orders

Experimental evidence for RAZ

- Experimental issues that wash out dip:
 - use of lepton rapidity rather than reconstructing W (retains most information)
 - contamination from photon radiation in W decay

WW: the importance of jet-binning

- Higgs backgrounds have different profile as a function $N_{\rm jets}$ of the number of jets present in the event
 - → important to understand theory the same way: notably, Higgs signal, top and WW backgrounds.

Jet vetoes

- Top backgrounds naturally contain jets: at least partly understood via wellknown weak interaction.
- In contrast, WW process only produces jets through QCD.
 - jet-binned cross sections can be subject to larger uncertainties.
- The reason is that the veto is explicitly removing part of the real radiation that is responsible for ensuring that infrared divergences cancel.
 - the incomplete cancellation that results introduces a logarithm into the perturbative expansion;
 - consider an inclusive WW cross section at NLO; naively, vetoing jets to obtain 0-jet cross-section is removing a term of order X_s;
 - however, the derivation of the Sudakov factor we sketched earlier tells us that we're actually introducing a factor more like α_s log²[2m_W/p_T^{veto}]; for typical values of the veto this factor is numerically large ~ 3.
 - we should therefore expect worse perturbative behaviour.

Vetoed uncertainties

- However, the usual method of scale variation results in uncertainties for vetoed cross sections smaller than for the inclusive case → too optimistic.
- The accidentally-small variation can be undone by assuming the scale uncertainties in the 0-jet and 1-jet bins are uncorrelated.

$$\Delta_{0-\text{jet}}^2 = \Delta_{\text{incl.}}^2 + \Delta_{1-\text{jet}}^2$$

New uncertainty much larger across the range of p_{T.}

Some empirical evidence that this may be *too* conservative.

Real answer is to resum the logarithms \rightarrow much work in case of H signal.

Anomalous triple gauge couplings

• aTGCs usually described in terms of additional interactions in the Lagrangian:

$$\begin{aligned} \mathcal{L}_{anom} &= ig_{WWZ} \left[\Delta g_1^Z \left(W^*_{\mu\nu} W^{\mu} Z^{\nu} - W_{\mu\nu} W^{*\mu} Z^{\nu} \right) + \Delta \kappa^Z W^*_{\mu} W_{\nu} Z^{\mu\nu} \right. \\ &\left. + \frac{\lambda^Z}{M_W^2} W^*_{\rho\mu} W^{\mu}_{\nu} Z^{\nu\rho} \right] + ig_{WW\gamma} \left[\Delta \kappa^{\gamma} W^*_{\mu} W_{\nu} \gamma^{\mu\nu} + \frac{\lambda^{\gamma}}{M_W^2} W^*_{\rho\mu} W^{\mu}_{\nu} \gamma^{\nu\rho} \right] \end{aligned}$$

- Most general contribution that separately conserves C and P.
- Operators do not change the predicted cross-section significantly, but instead alter distributions at high p_T, invariant mass, etc.
- This plot, for illustration, uses values of parameters outside current exclusion.
 - need to look for small deviation in tail.

Example of result

A bit beyond vector bosons ...

• The gluon-initiated WW contribution has the same external particles as the Higgs production process. Should calculate full amplitude before squaring:

- Is the interference important? Need to check in view of importance to extracting couplings.
- How do we define signal and background?
 - at what point is the Higgs boson just another SM contribution?

Notation

$$\begin{split} \mathcal{A}_{\mathrm{full}} &= \delta^{a_1 a_2} \begin{pmatrix} \frac{g_w^4 g_s^2}{16\pi^2} \end{pmatrix} \mathcal{P}_W(s_{34}) \mathcal{P}_W(s_{56}) \underbrace{\left[2 \,\mathcal{A}_{\mathrm{massless}} + \mathcal{A}_{\mathrm{massive}} + \mathcal{A}_{\mathrm{Higgs}} \right]}_{\mathcal{A}_{\mathrm{box}}} \\ \bullet & \text{Background only:} \qquad \sigma_B \longrightarrow \left| \mathcal{A}_{\mathrm{box}} \right|^2 \\ \bullet & \text{Signal only:} \qquad \sigma_H \longrightarrow \left| \mathcal{A}_{\mathrm{Higgs}} \right|^2 \end{split}$$

• This is the usual approach. To include the effect of interference define:

$$\sigma_i \longrightarrow 2 \operatorname{Re}\left(\mathcal{A}_{\operatorname{Higgs}} \mathcal{A}_{\operatorname{box}}^*\right)$$

• Cross section in the presence of the Higgs, i.e. including also the interference:

$$\sigma_{H,i} = \sigma_H + \sigma_i$$

• Can then compare results for σ_H and $\sigma_{H,i}$.

Analyzing the interference

• Separate interference by Re and Im parts of propagator:

$$\delta\sigma_i \!=\! \frac{(\hat{s}-m_H^2)}{(\hat{s}-m_H^2)^2\!+\!m_H^2\Gamma_H^2} \,\mathfrak{Re}\left\{2\widetilde{\mathcal{A}}_{\mathrm{Higgs}}\mathcal{A}_{\mathrm{box}}^*\right\} \!+\! \frac{m_H\Gamma_H}{(\hat{s}-m_H^2)^2\!+\!m_H^2\Gamma_H^2} \,\mathfrak{Im}\left\{2\widetilde{\mathcal{A}}_{\mathrm{Higgs}}\mathcal{A}_{\mathrm{box}}^*\right\}$$

- For our light Higgs the second term is negligible.
- If the full s-dependence of the first term can be represented by factor from the propagator, it should vanish on integration (odd about the Higgs mass).
 - but s-dependence is more complicated because the box diagrams favour large invariant masses (W pairs).
- Long destructive tail required by unitarity; integrated contribution significant, (negative) 10-15%.

Tri-boson production

- Cross sections very small: after including decays and cuts, cross sections are in the region of tens of femtobarns (at most).
- All modes available in VBFNLO, Bozzi et al (2011) Zyy in MCFM. 18 solid: $\mu_F = \mu_R = \xi \mu_0$ W⁻vv dashed: $\mu_F = \xi \mu_0$, $\mu_R = \mu_0$ Example: Wyy scale 16 dotted: $\mu_F = \mu_0$, $\mu_B = \xi \mu_0$ dependence (VBFNLO). 14 NLO 12 Large enhancement due to gluon flux NLO p^{cut}_{T i} = 50 GeV , 10 8 NLO p_{T i}^{cut} = 30 GeV Even after strong jet veto, 6 still significant enhancement 4 LO (partially due to RAZ) 2 0

0.1

 Era of tri-boson measurements just beginning at LHC.

ξ

10

Vector bosons: experimental summary

Good consistency with expectations of NNLO (W/Z) and NLO (di-bosons) for all processes in both experiments.

Slight exception: WW has a small error and looks high throughout.

Vector boson scattering

- One way of probing the electroweak sector further is through vector boson scattering.
- Simplest to consider the amplitudes not a hadron collider but in the pure scattering process:

$$W^+(p_+) + W^-(p_-) \to W^+(q_+) + W^-(q_-)$$

(e)

Five diagrams all involving selfcouplings of the vector bosons

High-energy limit (again)

- Once again consider the high-energy behaviour, concentrating on leading behaviour given by the scattering of longitudinal W bosons.
- Incoming W's along the *z*-axis:

$$p_{\pm} = (E, 0, 0, \pm p),$$

 $q_{\pm} = (E, 0, \pm p \sin \theta, \pm p \cos \theta)$

and longitudinal polarizations a slight generalization of previous form:

$$egin{aligned} arepsilon_L(p_\pm) &=& \left(rac{p}{M_W}, 0, 0, \pm rac{E}{M_W}
ight), \ arepsilon_L(q_\pm) &=& \left(rac{p}{M_W}, 0, \pm rac{E}{M_W}\sin heta, \pm rac{E}{M_W}\cos heta
ight) \end{aligned}$$

• Use these to calculate the form of the diagrams in the high-energy limit, i.e. dropping terms without factor of p^2/m_W^2 .

Result

Result (continued)

Discussion

- As a result, WW scattering amplitude does not diverge at high-energy.
 - however, it may still be too large for perturbative unitarity to hold
- Can examine using a partial-wave analysis.

Lee, Quigg and Thacker (1977)

• Looking at all channels of vector boson scattering and requiring unitarity results in a constraint on the Higgs boson mass:

$$M_H < \left(\frac{8\sqrt{2}\pi}{3G_F}\right)^{\frac{1}{2}} \approx 1 \text{ TeV}$$

- Observation of a Higgs boson violating this bound would have meant strong interactions of W,Z bosons that could not be described perturbatively.
- Even with a light Higgs, it is possible that it is not entirely responsible for the unitarization at high energies
 - essential to probe vector boson scattering to look for anomalous couplings/ hints of new particles.

Recent study

Entries

- Like vector-boson fusion: induce scattering in association with two forward jets.
- Sensitivity to operators not probed in di-boson production ($C_{\phi W}$ here).
- $\sigma_{SM} \sim 0.5$ pb (w/o decays), need very high luminosity.

Summary

- The importance of multi-boson production.
 - role of self-interactions (gauge structure) in taming highenergy behaviour
- Review of selected di-boson phenomenology.
 - radiation amplitude zero, jet-binning, aTGCs, interference
- Beyond inclusive di-boson measurements.
 - the importance of vector boson scattering