Sarah Demers Yale University

July 15-16, 2013 CTEQ Summer School

RESULTS FROM THE TEVATRON AND THE LHC

(EXCEPT FOR RESULTS THAT RELATE TO THE HIGGS)

OUTLINE

- The Accelerators
- The Detectors
- The Physics Programs
 - Today: Five Measurements
- Tomorrow:
 - Surprises
 - Searches
 - The Informed Scientific Citizen
 - How to possibly keep up with all of this?

THE ACCELERATORS TEVATRON - LHC

TeVatron

The LHC (Large Horrible Catastrophe)

THE ACCELERATORS TEVATRON - LHC

TeVatron

The LHC (Large Hadron Collider)

ACCELERATORS

- proton beam: ~1 MJ
- diameter: 2π km
- Center of Mass Energy: 1.96 TeV
- proton, anti-proton collisions

- beam: ~350 MJ
- diameter: 27 km
- Center of Mass Energy: 7, 8 TeV (13?)
- proton-proton
 collisions

(A DECADE OF) TEVATRON PERFORMANCE

LHC PERFORMANCE (+ ATLAS)

CROSS SECTIONS VS. ENERGY

PARTONS CONTRIBUTING TO CROSS SECTION

TeVatron physics quark dominated

LHC physics gluon dominated

THE DETECTORS

CDF

ATLAS

D0

CMS

THE DETECTORS

TEVATRON TRACKERS

TRACKING CHAMBERS

CALORIMETERS: TEVATRON

CDF Calorimeters

D0 Calorimeters

CALORIMETERS: LHC

ATLAS and CMS electromagnetic calorimeters

LHC CALORIMETER COMPARISON

(FROM C. TULLY CERN SUMMER SCHOOL LECTURE)

	ATLAS Lead	I/L. Ar ECAL	CMS PWO Crystal ECAL				
	Barrel	Barrel Endcaps		Endcaps			
# of Channels	110,208	83,744	61,200	14,648			
Lateral Segmentation ($\Delta \eta \mathbf{x} \Delta \phi$)							
Presampler	0.025	x 0.1					
Strip/Preshower	0.003 x 0.1	0.005 x 0.1		32 S /4 crystals			
Main Body	0.025 >	k 0.025	0.0175 x 0.0175	Up to 0.05 x 0.05			
Back	0.05 x	0.025					
	Lor	ngitudinal Segmen	tation				
Presampler	10 mm L. Ar	2 x 2 mm L. Ar					
Strip/Preshower	~4.3 X ₀	~4 X ₀		3 X ₀			
Main Body	~16 X ₀	~20 X ₀	26 X ₀	25 X ₀			
Back	~2 X ₀	~2 X ₀					
	Designed Energy Resolution						
Stochastic: a	10%	10 - 12%	2.7%	5.7%			
Constant: b	0.7%	0.7%	0.55%	0.55%			
Noise: C	0.25 GeV	0.25 GeV	0.16 GeV	0.77 GeV 1			

PHYSICS PROGRAM: MEASURE

Constrain, over-constrain, test, probe:

mass, width, lifetime, charge, kinematics, polarization, spin, ...

PHYSICS PROGRAM: SEARCH

Gravity

idden World

Our World

Supersymmetry, extra dimensions, gravitons, mini black holes leptoquarks, axions, dark matter, rare decays, CP violation, ...

USING THE STANDARD MODEL AS A GUIDE

Toolbox

TAG AND PROBE WITH Z BOSONS

Probe: unbiased object with known ID

Require ee / μμ pair to - have opposite charge - give Z mass

TOP QUARKS AS GUIDES

tt is a primary background in many searches (we'll discuss some of these tomorrow!)

STANDARD MODEL BEHAVING TOO WELL

W MASS MEASUREMENT

CDF

W MASS AT CDF

W mass used 2.2 fb⁻¹

470126 W->ev events

624708 W->μν events

W AND Z PRODUCTION AT **TEVATRON**

SELECTION

Electrons

- Drift chamber track, p_T > 18 GeV
- EM calo cluster > 30 GeV
- track-cluster matching
- |η| < **1**
- E/p < 1.6
- E_{HAD}/E_{EM} < 0.1</p>
- transverse shower shape requirement

Muons

- Drift chamber track, p_T > 30 GeV
- matching hits in muon chambers and minimumionizing in calorimeter

reject events with 2nd lepton lepton pT between 30 and 55 GeV neutrino pT between 30 and 55 GeV hadronic recoil < 15 GeV (using calo towers – lepton deposits) transverse mass between 60 and 100 GeV

BACKGROUNDS

	Deelemound	% of W , un data	δr	$\overline{n_W}$ (MeV	/)
	Dackground	70 Of $W \rightarrow \mu \nu$ data	m_T fit	p_T^{μ} fit	p_T^{ν} fit
	$Z ightarrow \mu \mu$	7.35 ± 0.09	2	4	5
	W ightarrow au u	0.880 ± 0.004	0	0	0
and k	QCD	0.035 ± 0.025	1	1	1
ecavs /	DIF	0.24 ± 0.08	1	3	1
n flight	Cosmic rays	0.02 ± 0.02	1	1	1
	Total		3	5	6

 π

C

ir

Deelermound	% of W and data	δn	$\overline{n_W}$ (MeV	$\mathcal{V})$
Dackground	$70 \text{ OI } W \rightarrow e \nu \text{ data}$	m_T fit	p_T^e fit	p_T^{ν} fit
$Z \rightarrow ee$	0.139 ± 0.014	1	2	1
$W \to \tau \nu$	0.93 ± 0.01	1	1	1
QCD	0.39 ± 0.14	4	2	4
Total		4	3	4

MEASUREMENT

Fit data to three distributions made in templates as a function of W mass between 80 GeV and 81 GeV: transverse mass, lepton p_T , neutrino p_T

(showing template comparison with best fit)

RESULT

	Distribution	W-boson mass (MeV)	χ^2/dof	
	$m_T(e, u)$	$80\ 408 \pm 19_{\rm stat} \pm 18_{\rm syst}$	52/48	
values are combined	, $p_T^\ell(e)$	$80~393 \pm 21_{\rm stat} \pm 19_{\rm syst}$	60/62	
taking into account	$p_T^{ u}(e)$	$80431\pm25_{\rm stat}\pm22_{\rm syst}$	71/62	fit results
the correlations	$m_T(\mu, \nu)$	$80~379 \pm 16_{\rm stat} \pm 16_{\rm syst}$	58/48	
	$p_T^\ell(\mu)$	$80\ 348 \pm 18_{\rm stat} \pm 18_{\rm syst}$	54/62	
	$p_T^ u(\mu)$	$80\ 406 \pm 22_{\rm stat} \pm 20_{\rm syst}$	79/62	
	Source	Uncertai	nty (MeV)	
	Lepton energy	scale and resolution	7	
	Recoil energy s	scale and resolution	6	
	Lepton remova	ıl	2	
	Backgrounds		3	uncertainties
	$p_T(W)$ model		5	
	Parton distribu	itions	10	
	QED radiation		4	
	W-boson statis	stics	12	
	Total		19	00
				79

MEASUREMENT OF U AND D COUPLINGS

D0

DØ: U AND D QUARK COUPLINGS TO Z

Measurement of $\sin^2 \theta_{eff}^{\ell}$ and Z-light quark couplings using the forward-backward charge asymmetry in $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ events with $\mathcal{L} = 5.0 \text{ fb}^{-1}$ at $\sqrt{s} = 1.96 \text{ TeV}$

PRD 84, 012007 (2011)

Measurement of vector and axial-vector couplings of u, d to Z bosons

$$g_V^f = I_3^f - 2q_f \cdot \sin^2 \theta_W$$
$$g_A^f = I_3^f$$

derived from best two-dimensional and four-dimensional χ^2 fit, given with their total uncertainty.					
	g^u_A	g_V^u	g^d_A	g_V^d	
D0 (2–D)	0.501 ± 0.061	0.202 ± 0.025	-0.477 ± 0.112	-0.377 ± 0.081	
D0 (4–D)	0.501 ± 0.110	0.201 ± 0.112	-0.497 ± 0.165	-0.351 ± 0.251	
CDF [21] (4–D)	$0.441^{+0.218}_{-0.186}$	$0.399^{+0.166}_{-0.199}$	$-0.016^{+0.358}_{-0.544}$	$-0.226^{+0.641}_{-0.304}$	
H1 [22] (4–D)	0.56 ± 0.10	0.05 ± 0.19	-0.77 ± 0.37	-0.50 ± 0.37	
LEP [15] (4–D)	$0.47^{+0.05}_{-0.33}$	$0.24^{+0.28}_{-0.11}$	$-0.52^{+0.05}_{-0.03}$	$-0.33^{+0.05}_{-0.07}$	
SM [16]	0.501	0.192	-0.502	-0.347	

Measured $\sigma_{ii}^{u(d)}$ and $\sigma_{ii}^{u(d)}$ values from different experiments compared with the SM predictions. The D0 results are TARLE VIII

RESULTS

g^d_A

TOP QUARK WIDTH

CDF

TOP QUARK WIDTH

$$\Gamma_{\rm top} = \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right]$$

 $\tau = \hbar/\Gamma$

Channel: ttbar lepton + jets

technique: 2-D template method with reconstructed mass and invariant mass of jets in hadronic W decay

Predicted width: 1.25 GeV

CDF Note 10936

DETERMINE MASS

chi squared created for each pairing of jet and leptons consistent with b-tagging

mass with minimum chi squared is used for each event

$$\begin{split} \chi^2 = & \sum_{i=l,4jets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{UE,fit} - p_T^{UE,meas})^2}{\sigma_j^2} \\ & + \frac{(M_{l\nu} - M_W)^2}{\Gamma_W^2} + \frac{(m_{jj} - M_W)^2}{\Gamma_W^2} \\ & + \frac{(M_{bl\nu} - m_t^{reco})^2}{\Gamma_t^2} + \frac{(M_{bjj} - m_t^{reco})^2}{\Gamma_t^2} \end{split}$$

DETERMINE MASS

TEMPLATES

Reconstructed mass templates without and with b-tags

WIDTH: BACKGROUNDS

CDF II Preliminary 8.7 fb^{-1}

	0-tag	1-tagL	1-tagT	2-tagL	2-tagT
W+jets	703 ± 199	170 ± 60	102 ± 37	11.6 ± 4.9	8.4 ± 3.5
Z+jets	52.3 ± 4.4	8.9 ± 1.1	5.9 ± 0.7	0.8 ± 0.1	0.5 ± 0.1
Single top	4.8 ± 0.5	10.5 ± 0.9	6.8 ± 0.6	2.2 ± 0.3	1.7 ± 0.2
Diboson	60.3 ± 5.6	111 ± 1.4	8.5 ± 1.1	1.0 ± 0.2	0.8 ± 0.1
Multijets	143 ± 114	34.5 ± 12.6	20.7 ± 16.6	4.4 ± 2.5	2.5 ± 2.4
Background	963 ± 229	235 ± 61	144 ± 41	19.9 ± 5.5	13.8 ± 4.2
$t\bar{t}$ signal	645 ± 86	695 ± 87	867 ± 108	192 ± 30	304 ± 47
Expected	1608 ± 245	930 ± 106	1011 ± 115	212 ± 30	318 ± 47
Observed	1627	882	997	208	275

RESULTS

LIKELIHOOD FIT

MEASUREMENT

 $\Gamma_{\rm top} = 2.21^{+1.46}_{-0.92} ({\rm stat})^{+1.12}_{-0.62} ({\rm syst}) {\rm GeV} = 2.21^{+1.84}_{-1.11} {\rm GeV}$

$$\tau_{\rm top} = 2.98^{+3.00}_{-1.35} \times 10^{-25} {\rm s}$$

TOP QUARK MASS COMBINATION

TeVatron

CDF AND DO TOP QUARK COMBINED MASS

TOP MASS: TWELVE CHANNELS USED

This table shows the twelve channels in the correlation matrix between channels, including both CDF and D0

		Ru	n I publisł	ned		Run II published			ublished			Run II preliminary
		CDF		DØ	ð		C	DF		DØ	ð	CDF
	$\ell + jets$	ll	alljets	$\ell + \mathrm{jets}$	ll	$\ell + \mathrm{jets}$	$\ell\ell$	all jets	L_{XY}	$\ell + \mathrm{jets}$	ll	MEt
CDF-I ℓ +jets	1.00	0.29	0.32	0.26	0.11	0.49	0.54	0.25	0.07	0.21	0.12	0.27
CDF-I $\ell\ell$	0.29	1.00	0.19	0.15	0.08	0.29	0.32	0.15	0.04	0.13	0.08	0.17
CDF-I alljets	0.32	0.19	1.00	0.14	0.07	0.30	0.38	0.15	0.04	0.09	0.06	0.16
DØ-I $\ell{+}\mathrm{jets}$	0.26	0.15	0.14	1.00	0.16	0.22	0.27	0.12	0.05	0.14	0.07	0.12
DØ-I ℓℓ	0.11	0.08	0.07	0.16	1.00	0.11	0.13	0.07	0.02	0.07	0.05	0.07
CDF-II $\ell{+}\mathrm{jets}$	0.49	0.29	0.30	0.22	0.11	1.00	0.48	0.29	0.08	0.30	0.18	0.33
CDF-II $\ell\ell$	0.54	0.32	0.38	0.27	0.13	0.48	1.00	0.25	0.06	0.11	0.07	0.26
CDF-II alljets	0.25	0.15	0.15	0.12	0.07	0.29	0.25	1.00	0.04	0.16	0.10	0.17
CDF-II L_{XY}	0.07	0.04	0.04	0.05	0.02	0.08	0.06	0.04	1.00	0.06	0.03	0.04
DØ-II $\ell{+}\mathrm{jets}$	0.21	0.13	0.09	0.14	0.07	0.30	0.11	0.16	0.06	1.00	0.39	0.18
DØ-II ℓℓ	0.12	0.08	0.06	0.07	0.05	0.18	0.07	0.10	0.03	0.39	1.00	0.11
CDF-II MEt	0.27	0.17	0.16	0.12	0.07	0.33	0.26	0.17	0.04	0.18	0.11	1.00

CDF AND DO TOP QUARK COMBINED MASS

$M_{\rm t} = 173.20 \pm 0.51 \,({\rm stat}) \pm 0.71 \,({\rm syst}) \,\,{\rm GeV}/c^2$

		Tevatron combined values (GeV/c^2)
	$M_{ m t}$	173.20
	In situ light-jet calibration (iJES)	0.36
	Response to $b/q/g$ jets (aJES)	0.09
	Model for b jets (bJES)	0.11
	Out-of-cone correction (cJES)	0.01
	Light-jet response (2) (dJES)	0.15
	Light-jet response (1) (rJES)	0.16
	Lepton modeling (LepPt)	0.05
	Signal modeling (Signal)	0.52
nium noise	Jet modeling (DetMod)	0.08
DO calo —	▶Offset (UN/MI)	0.00
(Dun 1)	Background from theory (BGMC)	0.06
(Run I)	Background based on data (BGData)	0.13
	Calibration method (Method)	0.06
	Multiple interactions model (MHI)	0.07
	Systematic uncertainty (syst)	0.71
	Statistical uncertainty (stat)	0.51
	Total uncertainty	0.87

ura

in

TAU POLARIZATION

ATLAS

TAU POLARIZATION

 $P_{\tau} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$

relative cross-section of left- and righthanded taus

Access to P_{τ} allows for

- tests of the SM
- searches for new physics
- discrimination between processes

Process	P _T Prediction
₩±-> тv	-1
Н±-> тv	+1
Ζ->π	≈ -0.15
Η-> π	0

TAU DECAYS

tau decay channels and their branching ratios

Channel	Dominant Decay Mode	BR[%]
$e^-\bar{\nu}\nu$	$e^- \bar{\nu_e} \nu_{\tau}$	$17.82\pm.04$
$\mu^- \bar{\nu} \nu$	$\mu^- \bar{ u_\mu} u_ au$	$17.39 \pm .04$
$h^- u$	$\pi^- u_{ au}$	$11.61 \pm .06$
$h^-\pi^0 u$	$\rho^- \nu_{ au} o \pi^- \pi^0 \nu_{ au}$	$25.94 \pm .09$
$h^{-}\pi^{0}\pi^{0}(\pi^{0})\nu$	$a_1^- \nu_\tau \to \pi^- \pi^0 \pi^0 \nu_\tau$	$10.85 \pm .11$
$h^-h^-h^+(\pi^0) u$	$a_1^- \nu_\tau \to \pi^- \pi^- \pi^+ \nu_\tau$	$14.56 \pm .07$

Unlike former experiments with electrons and positrons where the initial beam energy gave important constraints to the kinematics, at a hadron collider, we do not know the initial energy of the interaction. (not a one-to-one mapping of optimal observables!)

The ability to access the final state particles from the ρ decays is a way to regain sensitivity at the LHC.

POLARIZATION OBSERVABLE

SAMPLE COMPOSITION

EW background from simulation, not	Sample	Number of Events
dependent on	Data	1136
tau Polarization	Electroweak Background	138 ± 4
	Left-Handed	Signal
	$W \rightarrow \tau_L \nu$	1002 ± 16
Multijet background	Multijet Background	69 ± 6
from data, corrected	Right-Handed	Signal
for signal contribution	$W \rightarrow \tau_R \nu$	1523 ± 22
(and therefore dependent	Multijet Background	79 ± 4
on tau Polarization)	-	

Signal to background ratio better than 5:1

SYSTEMATIC UNCERTAINTIES

Sources of Systematic Uncertainty

Source	$+\Delta P_{\tau}$	$-\Delta P_{\tau}$
Energy scale central Energy scale forward $E_{\rm T}^{\rm miss}$ resolution No FCal	0.042 0.007 0.014 0.003	0.063
au identification Trigger	$0.005 \\ 0.007$	0.006 0.006
$\begin{array}{l} \mathrm{MC\ model} \\ W\ \mathrm{cross-section} \\ Z\ \mathrm{cross-section} \end{array}$	$\begin{array}{c} 0.020 \\ 0.005 \\ 0.006 \end{array}$	$0.020 \\ 0.005 \\ 0.006$
Combined	0.05	0.07

RESULTS

