Introduction to Monte Carlos

Stefan Gieseke

Institut für Theoretische Physik KIT

CTEQ Summer School 2013 Pittsburgh, 7–17 July 2013

Outline

- Part I Basics
 - Introduction
 - Monte Carlo techniques
- Part II Perturbative physics
 - Hard scattering
 - Parton showers
- Part III Non–perturbative physics
 - Hadronization
 - Hadronic decays
 - Comparison to data

Thanks to my colleagues

Frank Krauss, Leif Lönnblad, Steve Mrenna, Peter Richardson, Mike Seymour, Torbjörn Sjöstrand.

Introduction

We want to understand

 $\mathscr{L}_{int} \longleftrightarrow Final \mbox{ states }.$

Stefan Gieseke · CTEQ School 2013

Can you spot the Higgs?

Experiment and Simulation

Monte Carlo Event Generators

- Complex final states in full detail (jets).
- Arbitrary observables and cuts from final states.
- Studies of new physics models.
- Rates and topologies of final states.
- Background studies.
- Detector Design.
- Detector Performance Studies (Acceptance).
- Obvious for calculation of observables on the quantum level

 $|A|^2 \longrightarrow$ Probability.

Divide and conquer

Partonic cross section from Feynman diagrams

$$d\sigma = d\sigma_{hard} dP(partons \rightarrow hadrons)$$

Note, that

$$\int dP(\text{partons} \to \text{hadrons}) = 1 \; ,$$

- σ remains unchanged
- introduce realistic fluctuations into distributions.

Divide and conquer

Partonic cross section from Feynman diagrams

$$d\sigma = d\sigma_{hard} dP(partons \rightarrow hadrons)$$

Note, that

$$\int dP(\text{partons} \rightarrow \text{hadrons}) = 1$$
,

- σ remains unchanged
- introduce realistic fluctuations into distributions.

Simulation steps governed by different scales \rightarrow separation into ($Q_0 \approx 1 \text{ GeV} > \Lambda_{\text{OCD}}$)

$$\begin{split} dP(\text{partons} \to \text{hadrons}) &= dP(\text{resonance decays}) & [\Gamma > Q_0] \\ &\times dP(\text{parton shower}) & [\text{TeV} \to Q_0] \\ &\times dP(\text{hadronisation}) & [\sim Q_0] \\ &\times dP(\text{hadronic decays}) & [O(\text{MeV})] \end{split}$$

$$\begin{split} dP(\text{partons} \rightarrow \text{hadrons}) &= dP(\text{resonance decays}) & [\Gamma > Q_0] \\ &\times dP(\text{parton shower}) & [\text{TeV} \rightarrow Q_0] \\ &\times dP(\text{hadronisation}) & [\sim Q_0] \\ &\times dP(\text{hadronic decays}) & [O(\text{MeV})] \end{split}$$

Quite complicated integration.

$$\begin{split} dP(\text{partons} \rightarrow \text{hadrons}) &= dP(\text{resonance decays}) & [\Gamma > Q_0] \\ &\times dP(\text{parton shower}) & [\text{TeV} \rightarrow Q_0] \\ &\times dP(\text{hadronisation}) & [\sim Q_0] \\ &\times dP(\text{hadronic decays}) & [O(\text{MeV})] \end{split}$$

Quite complicated integration.

Monte Carlo is the only choice.

Monte Carlo Methods

Introduction to the most important MC sampling (= integration) techniques.

- 1. Hit and miss.
- 2. Simple MC integration.
- 3. (Some) methods of variance reduction.
- 4. Multichannel.

Probability density:

$$dP = f(x) dx$$

is probability to find value *x*.

Probability \sim *Area*

Probability density:

$$dP = f(x) dx$$

is probability to find value *x*.

$$F(x) = \int_{x_0}^x f(x) \, dx$$

is called *probability distribution*.

 $Probability \sim Area$

Hit and miss method:

- ► throw *N* random points (*x*, *y*) into region.
- ▶ Count hits N_{hit},
 i.e. whenever y < f(x).

Then

$$I \approx V \frac{N_{\rm hit}}{N}.$$

approaches 1 again in our example.

Example:
$$f(x) = \cos(x)$$
.

Every accepted value of *x* can be considered an event in this picture. As f(x) is the 'histogram' of *x*, it seems obvious that the *x* values are distributed as f(x) from this picture.

This method is used in many event generators. However, it is not sufficient as such.

- Can handle any density f(x), however wild and unknown it is.
- f(x) should be bounded from above.
- ► Sampling will be very *inefficient* whenever Var(*f*) is large.

Improvements go under the name variance reduction as they improve the error of the crude MC at the same time. Mean value theorem of integration:

$$I = \int_{x_0}^{x_1} f(x) dx$$

= $(x_1 - x_0) \langle f(x) \rangle$
 $\approx (x_1 - x_0) \frac{1}{N} \sum_{i=1}^N f(x_i)$

(Riemann integral).

Sum doesn't depend on ordering \longrightarrow randomize x_i .

Yields a flat distribution of events x_i , but weighted with *weight* $f(x_i) (\rightarrow \text{unweighting})$.

Inverting the Integral

- ► Probability density *f*(*x*). Not necessarily normalized.
- Integral F(x) known,
- $\blacktriangleright P(x < x_s) = F(x_s) \ .$
- Probability = 'area', distributed evenly,

$$\int_{x_0}^x dP = r \cdot \text{area}$$

Sample *x* according to f(x) with

$$x = F^{-1} \Big[F(x_0) + r \big(F(x_1) - F(x_0) \big) \Big] \,.$$

Stefan Gieseke · CTEQ School 2013

Sample *x* according to f(x) with

$$x = F^{-1} \Big[F(x_0) + r \big(F(x_1) - F(x_0) \big) \Big] \; .$$

Optimal method, but we need to know

- The integral $F(x) = \int f(x) dx$,
- It's inverse $F^{-1}(y)$.

That's rarely the case for real problems.

But very powerful in combination with other techniques.

Error on Crude MC $\sigma_{MC} = \sigma / \sqrt{N}$.

 \implies Reduce error by reducing variance of integrand.

Error on Crude MC $\sigma_{MC} = \sigma/\sqrt{N}$.

 \implies Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

$$I = \int f \, \mathrm{d}V = \int \frac{f}{p} p \, \mathrm{d}V \approx \left\langle \frac{f}{p} \right\rangle \pm \sqrt{\frac{\langle f^2/p^2 \rangle - \langle f/p \rangle^2}{N}}$$

where we have chosen $\int p \, dV = 1$ for convenience.

Note: need to sample flat in p dV, so we better know $\int p dV$ and it's inverse.

Importance sampling — better example

Importance sampling — better example

$$\frac{1}{2\sqrt{x}}$$

with some wiggles,

$$p(x) = 1 - 8x + 40x^2 - 64x^3 + 32x^4$$

i.e. we want to integrate

$$f(x) = \frac{p(x)}{2\sqrt{x}} \, .$$

Importance sampling — better example

- Crude MC gives result in reasonable 'time'.
- Error a bit unstable.
- Event generation with maximum weight w_{max} = 20. (that's arbitrary.)
- ▶ hit/miss/events with (w > w_{max}) = 36566/963434/617 with 1M generated events.

Importance sampling — example

Want events:

use hit+mass variant here:

- Choose new random number r
- w = f(x) in this case.
- ▶ if r < w/w_{max} then "hit".
- MC efficiency = hit/N.
- Efficiency for MC events only 3.7%.
- Note the wiggly histogram.

Now importance sampling, i.e. divide out $1/2\sqrt{x}$.

$$\int_{0}^{1} \frac{p(x)}{2\sqrt{x}} dx = \int_{0}^{1} \left(\frac{p(x)}{2\sqrt{x}} \middle/ \frac{1}{2\sqrt{x}} \right) \frac{dx}{2\sqrt{x}}$$
$$= \int_{0}^{1} p(x) d\sqrt{x}$$
$$= \int_{0}^{1} p(x(\rho)) d\rho$$
$$= \int_{0}^{1} 1 - 8\rho^{2} + 40\rho^{4} - 64\rho^{6} + 32\rho^{8} d\rho$$

so,

$$\rho = \sqrt{x}, \qquad d\rho = \frac{dx}{2\sqrt{x}}$$

x sampled with *inverting the integral* from flat random numbers ρ , $x = \rho^2$.

Stefan Gieseke · CTEQ School 2013

Events generated with $w_{max} = 1$, as $p(x) \le 1$, no guesswork needed here! Now, we get 74.6% MC efficiency.

Events generated with $w_{max} = 1$, as $p(x) \le 1$, no guesswork needed here! Now, we get 74.6% MC efficiency.

 \ldots as opposed to 3.7%.

Stefan Gieseke · CTEQ School 2013

Crude MC vs Importance sampling.

 $100 \times$ more events needed to reach same accuracy.

Typical problem:

► f(s) has multiple peaks (× wiggles from ME).

Typical problem:

- ► f(s) has multiple peaks (× wiggles from ME).
- Usually have some idea of the peak structure.

Typical problem:

- ► f(s) has multiple peaks (× wiggles from ME).
- Usually have some idea of the peak structure.
- Encode this in sum of sample functions g_i(s) with weights α_i, Σ_i α_i = 1.

$$g(s) = \sum_i \alpha_i g_i(s) \; .$$

Now rewrite

$$\int_{s_0}^{s_1} f(s) ds = \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g(s) ds$$
$$= \int_{s_0}^{s_1} \frac{f(s)}{g(s)} \sum_i \alpha_i g_i(s) ds$$
$$= \sum_i \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) ds$$

Now $g_i(s) ds = d\rho_i$ (inverting the integral).

Now rewrite

$$\int_{s_0}^{s_1} f(s) ds = \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g(s) ds$$
$$= \int_{s_0}^{s_1} \frac{f(s)}{g(s)} \sum_i \alpha_i g_i(s) ds$$
$$= \sum_i \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) ds$$

Now $g_i(s) ds = d\rho_i$ (inverting the integral).

Select the distribution $g_i(s)$ you'd like to sample next event from acc to weights α_i .

 α_i can be optimized after a number of trials.

Stefan Gieseke · CTEQ School 2013

Works quite well:

Stefan Gieseke · CTEQ School 2013

Some Remarks/Real Life MC

- Didn't discuss random number generators. Please make sure to use 'good' random numbers.
- Didn't discuss stratified sampling (VEGAS).
 Sample where variance is biggest.
 (not necessarily where PS is most populated).
- ► Only discussed one-dimensional case here. N-particle PS has 3N 4 dimensions...
- Didn't discuss tools geared towards this, like RAMBO (generates flat N particles PS).
- ► generalisation straightforward, particularly MCError $\sim \frac{1}{\sqrt{N}}$, compare eg Trapezium rule Error $\sim \frac{1}{N^{2/D}}$.
- Many important techniques covered here in detail! Should be good starting point.

Hard Scattering

Hard scattering

Hard scattering

Matrix elements

 Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs (O(1)).

• OK for very inclusive observables.

Matrix elements

 Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs (O(1)).

- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC (O(100)).

Matrix elements

 Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs (O(1)).

- OK for very inclusive observables.
- Starting point for further simulation.
- ▶ Want exclusive final state at the LHC (*O*(100)).
- Want arbitrary cuts.
- \rightarrow use Monte Carlo methods.

Where do we get (LO) $|M|^2$ from?

- ► Most/important simple processes (SM) are 'built in'.
- ► Calculate yourself (≤ 3 particles in final state).
- Matrix element generators:
 - MadGraph/MadEvent.
 - Comix/AMEGIC (part of Sherpa).
 - HELAC/PHEGAS.
 - Whizard.
 - CalcHEP/CompHEP.

generate code or event files that can be further processed.

• \rightarrow FeynRules interface to ME generators.

From Matrix element, we calculate

$$\boldsymbol{\sigma} = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \overline{\boldsymbol{\Sigma}} |M|^2 \qquad dx_1 dx_2 d\Phi_n ,$$

From Matrix element, we calculate

$$\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \overline{\sum} |M|^2 \Theta(\text{cuts}) \, \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\Phi_n \; ,$$

From Matrix element, we calculate

$$\boldsymbol{\sigma} = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \overline{\boldsymbol{\Sigma}} |M|^2 \Theta(\text{cuts}) \, \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\Phi_n \; ,$$

now,

$$\frac{1}{F} dx_1 dx_2 d\Phi_n = J(\vec{x}) \prod_{i=1}^{3n-2} dx_i \qquad \left(d\Phi_n = (2\pi)^4 \delta^{(4)}(\dots) \prod_{i=1}^n \frac{d^3 \vec{p}}{(2\pi)^3 2E_i} \right)$$

such that

$$\begin{split} \sigma &= \int g(\vec{x}) \, \mathrm{d}^{3n-2} \vec{x} , \qquad \left(g(\vec{x}) = J(\vec{x}) f_i f_j \overline{\sum} |M|^2 \Theta(\mathrm{cuts}) \right) \\ &= \frac{1}{N} \sum_{i=1}^N \frac{g(\vec{x}_i)}{p(\vec{x}_i)} = \frac{1}{N} \sum_{i=1}^N w_i . \end{split}$$

Stefan Gieseke · CTEQ School 2013

From Matrix element, we calculate

$$\boldsymbol{\sigma} = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \overline{\boldsymbol{\Sigma}} |M|^2 \Theta(\text{cuts}) \, \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\Phi_n \; ,$$

now,

$$\frac{1}{F} dx_1 dx_2 d\Phi_n = J(\vec{x}) \prod_{i=1}^{3n-2} dx_i \qquad \left(d\Phi_n = (2\pi)^4 \delta^{(4)}(\dots) \prod_{i=1}^n \frac{d^3 \vec{p}}{(2\pi)^3 2E_i} \right)$$

such that

$$\begin{split} \sigma &= \int g(\vec{x}) \, \mathrm{d}^{3n-2} \vec{x} \;, \qquad \left(g(\vec{x}) = J(\vec{x}) f_i f_j \overline{\sum} |M|^2 \Theta(\mathrm{cuts}) \right) \\ &= \frac{1}{N} \sum_{i=1}^N \frac{g(\vec{x}_i)}{p(\vec{x}_i)} = \frac{1}{N} \sum_{i=1}^N w_i \;. \end{split}$$

We generate events \vec{x}_i with weights w_i .

Stefan Gieseke · CTEQ School 2013

• We generate pairs (\vec{x}_i, w_i) .

- We generate pairs (\vec{x}_i, w_i) .
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)

- We generate pairs (\vec{x}_i, w_i) .
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_i with probability

$$P_i = \frac{w_i}{w_{\max}}$$

Generate events with same frequency as in nature!

- We generate pairs (\vec{x}_i, w_i) .
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_i with probability

$$P_i = \frac{w_i}{w_{\max}} \; ,$$

where w_{max} has to be chosen sensibly. \rightarrow reweighting, when $\max(w_i) = \bar{w}_{\text{max}} > w_{\text{max}}$, as

$$P_i = \frac{w_i}{\bar{w}_{\max}} = \frac{w_i}{w_{\max}} \cdot \frac{w_{\max}}{\bar{w}_{\max}} ,$$

i.e. reject events with probability $(w_{\text{max}}/\bar{w}_{\text{max}})$ afterwards. (can be ignored when #(events with $w_i > \bar{w}_{\text{max}})$ small.)

- We generate pairs (\vec{x}_i, w_i) .
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_i with probability

$$P_i = \frac{w_i}{w_{\max}}$$

Generate events with same frequency as in nature!

Some comments:

Use techniques from above to generate events efficiently. Goal: small variance in w_i distribution! Some comments:

- Use techniques from above to generate events efficiently. Goal: small variance in w_i distribution!
- ► Clear from above: efficient generation closely tied to knowledge of *f*(*x*_i), *i.e.* the matrix element's propagator structure.

 \rightarrow build phase space generator already while generating ME's automatically.

Parton Showers

Hard matrix element

Hard matrix element \rightarrow parton showers

► Know short distance (short time) fluctuations from matrix element/Feynman diagrams: *Q* ~ few GeV to *O*(TeV).

► Measure hadronic final states, long distance effects, Q₀ ~ 1GeV.

- ► Know short distance (short time) fluctuations from matrix element/Feynman diagrams: *Q* ~ few GeV to *O*(TeV).
- ► Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. TeV → 1 GeV.
- ► Measure hadronic final states, long distance effects, Q₀ ~ 1GeV.

- ► Know short distance (short time) fluctuations from matrix element/Feynman diagrams: *Q* ~ few GeV to *O*(TeV).
- ► Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. TeV → 1 GeV.
- ► Measure hadronic final states, long distance effects, Q₀ ~ 1GeV.

Dominated by large logs, terms

$$\alpha_S^n \log^{2n} \frac{Q}{Q_0} \sim 1$$
.

Generated from emissions *ordered* in *Q*.
Quarks and gluons in final state, pointlike.

- ► Know short distance (short time) fluctuations from matrix element/Feynman diagrams: *Q* ~ few GeV to *O*(TeV).
- ► Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. TeV → 1 GeV.
- ► Measure hadronic final states, long distance effects, Q₀ ~ 1GeV.

Dominated by large logs, terms

$$\alpha_S^n \log^{2n} \frac{Q}{Q_0} \sim 1$$
.

Generated from emissions *ordered* in *Q*. Soft and/or collinear emissions.

e^+e^- annihilation

Good starting point: $e^+e^- \rightarrow q\bar{q}g$:

Final state momenta in one plane (orientation usually averaged). Write momenta in terms of

$$x_{i} = \frac{2p_{i} \cdot q}{Q^{2}} \quad (i = 1, 2, 3) ,$$

$$0 \le x_{i} \le 1 , x_{1} + x_{2} + x_{3} = 2 ,$$

$$q = (Q, 0, 0, 0) ,$$

$$Q \equiv E_{cm} .$$

Fig: momentum configuration of q, \bar{q} and g for given point $(x_1, x_2), \bar{q}$ direction fixed.

$$(x_1, x_2) = (x_q, x_{\bar{q}})$$
 –plane:

Differential cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_1\mathrm{d}x_2} = \sigma_0 \frac{C_F \alpha_S}{2\pi} \frac{x_1 + x_2}{(1 - x_1)(1 - x_2)}$$

Collinear singularities: $x_1 \rightarrow 1$ or $x_2 \rightarrow 1$. Soft singularity: $x_1, x_2 \rightarrow 1$.

Differential cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_1\mathrm{d}x_2} = \sigma_0 \frac{C_F \alpha_S}{2\pi} \frac{x_1 + x_2}{(1 - x_1)(1 - x_2)}$$

Collinear singularities: $x_1 \rightarrow 1$ or $x_2 \rightarrow 1$. Soft singularity: $x_1, x_2 \rightarrow 1$.

Rewrite in terms of x_3 and $\theta = \angle(q,g)$:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\mathrm{d}x_3} = \sigma_0 \frac{C_F \alpha_S}{2\pi} \left[\frac{2}{\sin^2\theta} \frac{1 + (1 - x_3)^2}{x_3} - x_3 \right]$$

Singular as $\theta \to 0$ and $x_3 \to 0$.

e^+e^- annihilation

Can separate into two jets as

$$\frac{2d\cos\theta}{\sin^2\theta} = \frac{d\cos\theta}{1-\cos\theta} + \frac{d\cos\theta}{1+\cos\theta}$$
$$= \frac{d\cos\theta}{1-\cos\theta} + \frac{d\cos\bar{\theta}}{1-\cos\bar{\theta}}$$
$$\approx \frac{d\theta^2}{\theta^2} + \frac{d\bar{\theta}^2}{\bar{\theta}^2}$$

e⁺e⁻ annihilation

Can separate into two jets as

$$\frac{2\mathrm{d}\cos\theta}{\sin^2\theta} = \frac{\mathrm{d}\cos\theta}{1-\cos\theta} + \frac{\mathrm{d}\cos\theta}{1+\cos\theta}$$
$$= \frac{\mathrm{d}\cos\theta}{1-\cos\theta} + \frac{\mathrm{d}\cos\bar{\theta}}{1-\cos\bar{\theta}}$$
$$\approx \frac{\mathrm{d}\theta^2}{\theta^2} + \frac{\mathrm{d}\bar{\theta}^2}{\bar{\theta}^2}$$

So, we rewrite $d\sigma$ in collinear limit as

$$d\sigma = \sigma_0 \sum_{\text{jets}} \frac{d\theta^2}{\theta^2} \frac{\alpha_S}{2\pi} C_F \frac{1 + (1 - z)^2}{z^2} dz$$

e⁺e⁻ annihilation

Can separate into two jets as

$$\frac{2\mathrm{d}\cos\theta}{\sin^2\theta} = \frac{\mathrm{d}\cos\theta}{1-\cos\theta} + \frac{\mathrm{d}\cos\theta}{1+\cos\theta}$$
$$= \frac{\mathrm{d}\cos\theta}{1-\cos\theta} + \frac{\mathrm{d}\cos\bar{\theta}}{1-\cos\bar{\theta}}$$
$$\approx \frac{\mathrm{d}\theta^2}{\theta^2} + \frac{\mathrm{d}\bar{\theta}^2}{\bar{\theta}^2}$$

So, we rewrite $d\sigma$ in collinear limit as

$$egin{aligned} \mathrm{d}\sigma &= \sigma_0 \sum_{\mathrm{jets}} rac{\mathrm{d} heta^2}{ heta^2} rac{lpha_S}{2\pi} C_F rac{1+(1-z)^2}{z^2} \mathrm{d}z \ &= \sigma_0 \sum_{\mathrm{jets}} rac{\mathrm{d} heta^2}{ heta^2} rac{lpha_S}{2\pi} P(z) \mathrm{d}z \end{aligned}$$

with DGLAP splitting function P(z).

Universal DGLAP splitting kernels for collinear limit:

$$\mathrm{d}\sigma = \sigma_0 \sum_{\mathrm{jets}} \frac{\mathrm{d}\theta^2}{\theta^2} \frac{\alpha_S}{2\pi} P(z) \mathrm{d}z$$

$$P_{q \rightarrow gq}(z) = C_F \frac{1 + (1-z)^2}{z}$$

 $P_{q \to qq}(z) = T_R(1 - 2z(1 - z))$

Universal DGLAP splitting kernels for collinear limit:

$$\mathrm{d}\sigma = \sigma_0 \sum_{\mathrm{jets}} rac{\mathrm{d} heta^2}{ heta^2} rac{lpha_S}{2\pi} P(z) \mathrm{d}z$$

Note: Other variables may equally well characterize the collinear limit:

$$\frac{\mathrm{d}\theta^2}{\theta^2} \sim \frac{\mathrm{d}Q^2}{Q^2} \sim \frac{\mathrm{d}p_{\perp}^2}{p_{\perp}^2} \sim \frac{\mathrm{d}\tilde{q}^2}{\tilde{q}^2} \sim \frac{\mathrm{d}t}{t}$$

whenever $Q^2, p_{\perp}^2, t \rightarrow 0$ means "collinear".

Universal DGLAP splitting kernels for collinear limit:

$$\mathrm{d}\sigma = \sigma_0 \sum_{\mathrm{jets}} rac{\mathrm{d} heta^2}{ heta^2} rac{lpha_S}{2\pi} P(z) \mathrm{d}z$$

Note: Other variables may equally well characterize the collinear limit:

$$\frac{\mathrm{d}\theta^2}{\theta^2} \sim \frac{\mathrm{d}Q^2}{Q^2} \sim \frac{\mathrm{d}p_{\perp}^2}{p_{\perp}^2} \sim \frac{\mathrm{d}\tilde{q}^2}{\tilde{q}^2} \sim \frac{\mathrm{d}t}{t}$$

whenever $Q^2, p_{\perp}^2, t \to 0$ means "collinear".

- θ : HERWIG
- Q^2 : PYTHIA \leq 6.3, old Sherpa.
- ▶ p_{\perp} : PYTHIA ≥ 6.4, ARIADNE, Catani–Seymour showers in HERWIG++ and SHERPA.
- ▶ q̃: Herwig++.

Need to introduce resolution t_0 , e.g. a cutoff in p_{\perp} . Prevent us from the singularity at $\theta \rightarrow 0$.

Emissions below t_0 are unresolvable.

Finite result due to virtual corrections:

unresolvable + virtual emissions are included in Sudakov form factor via unitarity (see below!).

Starting point: factorisation in collinear limit, single emission.

$$\sigma_{2+1}(t_0) = \sigma_2(t_0) \int_{t_0}^t \frac{\mathrm{d}t'}{t'} \int_{z_-}^{z_+} \mathrm{d}z \frac{\alpha_S}{2\pi} \hat{P}(z) = \sigma_2(t_0) \int_{t_0}^t \mathrm{d}t \, W(t) \; .$$

Starting point: factorisation in collinear limit, single emission.

$$\sigma_{2+1}(t_0) = \sigma_2(t_0) \int_{t_0}^t \frac{\mathrm{d}t'}{t'} \int_{z_-}^{z_+} \mathrm{d}z \, \frac{\alpha_S}{2\pi} \hat{P}(z) = \sigma_2(t_0) \int_{t_0}^t \mathrm{d}t \, W(t) \; .$$

Simple example: Multiple photon emissions, strongly ordered in *t*. We want

for any number of emissions.

We used

$$\int_{t_0}^t dt_1 \dots \int_{t_0}^{t_{n-1}} dt_n \ W(t_1) \dots W(t_n) = \frac{1}{n!} \left(\int_{t_0}^t dt \ W(t) \right)^n \, .$$

Easily generalized to n emissions ϕ_{i} by induction. *i.e.*

$$W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t \, W(t) \right)^n$$

Easily generalized to n emissions \bullet by induction. *i.e.*

$$W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t \, W(t) \right)^n$$

So, in total we get

$$\sigma_{>2}(t_0) = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^t dt \, W(t) \right)^k = \sigma_2(t_0) \left(e^{2 \int_{t_0}^t dt \, W(t)} - 1 \right)$$

Easily generalized to n emissions \mathbf{e}_{i} by induction. *i.e.*

$$W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t \, W(t) \right)^n$$

So, in total we get

$$\begin{aligned} \sigma_{>2}(t_0) &= \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^t dt \, W(t) \right)^k = \sigma_2(t_0) \left(e^{2\int_{t_0}^t dt \, W(t)} - 1 \right) \\ &= \sigma_2(t_0) \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right) \end{aligned}$$

Sudakov Form Factor

$$\Delta(t_0,t) = \exp\left[-\int_{t_0}^t \mathrm{d}t \, W(t)\right]$$

Easily generalized to n emissions \mathbf{e}_{n} by induction. *i.e.*

$$W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t \, W(t) \right)^n$$

So, in total we get

$$\begin{aligned} \sigma_{>2}(t_0) &= \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^t dt \, W(t) \right)^k = \sigma_2(t_0) \left(e^{2\int_{t_0}^t dt \, W(t)} - 1 \right) \\ &= \sigma_2(t_0) \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right) \end{aligned}$$

Sudakov Form Factor in QCD

$$\Delta(t_0,t) = \exp\left[-\int_{t_0}^t \mathrm{d}t \, W(t)\right] = \exp\left[-\int_{t_0}^t \frac{\mathrm{d}t}{t} \int_{z_-}^{z_+} \frac{\alpha_S(z,t)}{2\pi} \hat{P}(z,t) \mathrm{d}z\right]$$

Sudakov form factor

Note that

$$\begin{split} \sigma_{\mathrm{all}} &= \sigma_2 + \sigma_{>2} = \sigma_2 + \sigma_2 \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right) \ , \\ &\Rightarrow \Delta^2(t_0, t) = \frac{\sigma_2}{\sigma_{\mathrm{all}}} \ . \end{split}$$

Two jet rate $= \Delta^2 = P^2$ (No emission in the range $t \to t_0$).

Sudakov form factor = No emission probability .

Often $\Delta(t_0, t) \equiv \Delta(t)$.

- ▶ Hard scale *t*, typically CM energy or p_{\perp} of hard process.
- ► Resolution t₀, two partons are resolved as two entities if inv mass or relative p_⊥ above t₀.
- ▶ *P*² (not *P*), as we have two legs that evolve independently.