Introduction to Monte Carlos

Stefan Gieseke

Institut für Theoretische Physik KIT

CTEQ Summer School 2013 Pittsburgh, 7-17 July 2013

Helmholtz Alliance

Outline

- Part I - Basics
- Introduction
- Monte Carlo techniques
- Part II — Perturbative physics
- Hard scattering
- Parton showers
- Part III — Non-perturbative physics
- Hadronization
- Hadronic decays
- Comparison to data

Thanks

Thanks to my colleagues
Frank Krauss, Leif Lönnblad, Steve Mrenna, Peter Richardson, Mike Seymour, Torbjörn Sjöstrand.

Introduction

Why Monte Carlos?

We want to understand

$$
\mathscr{L}_{\text {int }} \longleftrightarrow \text { Final states }
$$

Can you spot the Higgs?

Why Monte Carlos?

LHC experiments require sound understanding of signals and backgrounds.
\uparrow
Full detector simulation.
\uparrow
Fully exclusive hadronic final state.
\uparrow
Monte Carlo event generator with parton shower, hadronization model, decays of unstable particles.
\uparrow
Parton level computations.

Experiment and Simulation

real life

Detector, Data Acquisition CMS, ATLAS, CDF ...
virtual reality

Monte Carlo Event Generators

- Complex final states in full detail (jets).
- Arbitrary observables and cuts from final states.
- Studies of new physics models.
- Rates and topologies of final states.
- Background studies.
- Detector Design.
- Detector Performance Studies (Acceptance).
- Obvious for calculation of observables on the quantum level

$$
|A|^{2} \longrightarrow \text { Probability }
$$

pp Event Generator

pp Event Generator

pp Event Generator

pp Event Generator

pp Event Generator

pp Event Generator

pp Event Generator

Divide and conquer

Partonic cross section from Feynman diagrams

$$
\mathrm{d} \sigma=\mathrm{d} \sigma_{\text {hard }} \mathrm{d} P(\text { partons } \rightarrow \text { hadrons })
$$

Note, that

$$
\int \mathrm{d} P(\text { partons } \rightarrow \text { hadrons })=1
$$

- σ remains unchanged
- introduce realistic fluctuations into distributions.

Divide and conquer

Partonic cross section from Feynman diagrams

$$
\mathrm{d} \sigma=\mathrm{d} \sigma_{\text {hard }} \mathrm{d} P(\text { partons } \rightarrow \text { hadrons })
$$

Note, that

$$
\int \mathrm{d} P(\text { partons } \rightarrow \text { hadrons })=1
$$

- σ remains unchanged
- introduce realistic fluctuations into distributions.

Simulation steps governed by different scales
\longrightarrow separation into ($Q_{0} \approx 1 \mathrm{GeV}>\Lambda_{\mathrm{QCD}}$)
$\mathrm{d} P$ (partons \rightarrow hadrons $)=\mathrm{d} P$ (resonance decays) $\quad\left[\Gamma>Q_{0}\right]$
$\times \mathrm{d} P$ (parton shower) $\quad\left[\mathrm{TeV} \rightarrow Q_{0}\right]$
$\times \mathrm{d} P$ (hadronisation)
$\left[\sim Q_{0}\right]$
$\times \mathrm{d} P($ hadronic decays $) \quad[O(\mathrm{MeV})]$

Divide and conquer

$\mathrm{d} P($ partons \rightarrow hadrons $)=$	$\mathrm{d} P($ resonance decays $)$	$\left[\Gamma>Q_{0}\right]$
	$\times \mathrm{d} P($ parton shower $)$	$\left[\mathrm{TeV} \rightarrow Q_{0}\right]$
	$\times \mathrm{d} P($ hadronisation $)$	$\left[\sim Q_{0}\right]$
	$\times \mathrm{d} P($ hadronic decays $)$	$[O(\mathrm{MeV})]$

Quite complicated integration.

Divide and conquer

$\mathrm{d} P($ partons \rightarrow hadrons $)=$	$\mathrm{d} P($ resonance decays $)$	$\left[\Gamma>Q_{0}\right]$
	$\times \mathrm{d} P($ parton shower $)$	$\left[\mathrm{TeV} \rightarrow Q_{0}\right]$
	$\times \mathrm{d} P($ hadronisation $)$	$\left[\sim Q_{0}\right]$
	$\times \mathrm{d} P$ (hadronic decays $)$	$[O(\mathrm{MeV})]$

Quite complicated integration.
Monte Carlo is the only choice.

Monte Carlo Methods

Monte Carlo Methods

Introduction to the most important MC sampling (= integration) techniques.

1. Hit and miss.
2. Simple MC integration.
3. (Some) methods of variance reduction.
4. Multichannel.

Probability

$$
\text { Example: } f(x)=\cos (x)
$$

Probability density:

$$
d P=f(x) d x
$$

is probability to find value x.

Probability ~ Area

Probability

$$
\text { Example: } f(x)=\cos (x)
$$

Probability density:

$$
d P=f(x) d x
$$

is probability to find value x.

$$
F(x)=\int_{x_{0}}^{x} f(x) d x
$$

is called probability distribution.
Probability ~ Area

Hit and Miss

Hit and miss method:

- throw N random points (x, y) into region.
- Count hits $N_{\text {hit }}$, i.e. whenever $y<f(x)$.

Then

$$
I \approx V \frac{N_{\mathrm{hit}}}{N}
$$

approaches 1 again in our example.

$$
\text { Example: } f(x)=\cos (x)
$$

Every accepted value of x can be considered an event in this picture. As $f(x)$ is the 'histogram' of x, it seems obvious that the x values are distributed as $f(x)$ from this picture.

Hit and Miss

This method is used in many event generators. However, it is not sufficient as such.

- Can handle any density $f(x)$, however wild and unknown it is.
- $f(x)$ should be bounded from above.
- Sampling will be very inefficient whenever $\operatorname{Var}(f)$ is large.

Improvements go under the name variance reduction as they improve the error of the crude MC at the same time.

Simple MC integration

Mean value theorem of integration:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle \\
& \approx\left(x_{1}-x_{0}\right) \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

(Riemann integral).
Sum doesn't depend on ordering
\longrightarrow randomize x_{i}.
Yields a flat distribution of events x_{i}, but weighted with weight $f\left(x_{i}\right)(\rightarrow$ unweighting $)$.

Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
- $P\left(x<x_{s}\right)=F\left(x_{s}\right)$.
- Probability = 'area', distributed evenly,

$$
\int_{x_{0}}^{x} d P=r \cdot \text { area }
$$

Sample x according to $f(x)$ with

$$
x=F^{-1}\left[F\left(x_{0}\right)+r\left(F\left(x_{1}\right)-F\left(x_{0}\right)\right)\right] .
$$

Inverting the Integral

Sample x according to $f(x)$ with

$$
x=F^{-1}\left[F\left(x_{0}\right)+r\left(F\left(x_{1}\right)-F\left(x_{0}\right)\right)\right] .
$$

Optimal method, but we need to know

- The integral $F(x)=\int f(x) \mathrm{d} x$,
- It's inverse $F^{-1}(y)$.

That's rarely the case for real problems.
But very powerful in combination with other techniques.

Importance sampling

Error on Crude MC $\sigma_{M C}=\sigma / \sqrt{N}$.
\Longrightarrow Reduce error by reducing variance of integrand.

Importance sampling

Error on Crude MC $\sigma_{M C}=\sigma / \sqrt{N}$.
\Longrightarrow Reduce error by reducing variance of integrand.
Idea: Divide out the singular structure.

$$
I=\int f \mathrm{~d} V=\int \frac{f}{p} p \mathrm{~d} V \approx\left\langle\frac{f}{p}\right\rangle \pm \sqrt{\frac{\left\langle f^{2} / p^{2}\right\rangle-\langle f / p\rangle^{2}}{N}}
$$

where we have chosen $\int p \mathrm{~d} V=1$ for convenience.
Note: need to sample flat in $p \mathrm{~d} V$, so we better know $\int p \mathrm{~d} V$ and it's inverse.

Importance sampling - better example

More interesting for divergent integrands, eg
$\frac{1}{2 \sqrt{x}}$,

Importance sampling - better example

More interesting for divergent integrands, eg

$$
\frac{1}{2 \sqrt{x}}
$$

with some wiggles,
$p(x)=1-8 x+40 x^{2}-64 x^{3}+32 x^{4}$.

Importance sampling - better example

More interesting for divergent integrands, eg

$$
\frac{1}{2 \sqrt{x}}
$$

with some wiggles,
$p(x)=1-8 x+40 x^{2}-64 x^{3}+32 x^{4}$.
i.e. we want to integrate

$$
f(x)=\frac{p(x)}{2 \sqrt{x}} .
$$

Importance sampling - better example

- Crude MC gives result in reasonable 'time'.
- Error a bit unstable.
- Event generation with maximum weight $w_{\max }=20$. (that's arbitrary.)
- hit/miss/events with $\left(w>w_{\max }\right)=$ 36566/963434/617 with 1M generated events.

Importance sampling - example

Want events:
use hit+mass variant here:

- Choose new random number r
- $w=f(x)$ in this case.
- if $r<w / w_{\max }$ then "hit".
- MC efficiency = hit/N.
- Efficiency for MC events only 3.7%.
- Note the wiggly histogram.

Importance sampling - example

Now importance sampling, i.e. divide out $1 / 2 \sqrt{x}$.

$$
\begin{aligned}
\int_{0}^{1} \frac{p(x)}{2 \sqrt{x}} d x & =\int_{0}^{1}\left(\frac{p(x)}{2 \sqrt{x}} / \frac{1}{2 \sqrt{x}}\right) \frac{d x}{2 \sqrt{x}} \\
& =\int_{0}^{1} p(x) d \sqrt{x} \\
& =\int_{0}^{1} p(x(\rho)) d \rho \\
& =\int_{0}^{1} 1-8 \rho^{2}+40 \rho^{4}-64 \rho^{6}+32 \rho^{8} d \rho
\end{aligned}
$$

so,

$$
\rho=\sqrt{x}, \quad d \rho=\frac{d x}{2 \sqrt{x}}
$$

x sampled with inverting the integral from flat random numbers $\rho, x=\rho^{2}$.

Importance sampling - example

Events generated with $w_{\max }=1$, as $p(x) \leq 1$, no guesswork needed here! Now, we get 74.6% MC efficiency.

Importance sampling - example

Events generated with $w_{\max }=1$, as $p(x) \leq 1$, no guesswork needed here! Now, we get 74.6% MC efficiency.
\ldots as opposed to 3.7%.

Importance sampling - example

Crude MC vs Importance sampling.

$100 \times$ more events needed to reach same accuracy.

Multichannel MC

Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).

Multichannel MC

Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.

Multichannel MC

Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.
- Encode this in sum of sample functions $g_{i}(s)$ with weights $\alpha_{i}, \sum_{i} \alpha_{i}=1$.

$$
g(s)=\sum_{i} \alpha_{i} g_{i}(s)
$$

Multichannel MC

Now rewrite

$$
\begin{aligned}
\int_{s_{0}}^{s_{1}} f(s) d s & =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g(s) d s \\
& =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} \sum_{i} \alpha_{i} g_{i}(s) d s \\
& =\sum_{i} \alpha_{i} \int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g_{i}(s) d s
\end{aligned}
$$

Now $g_{i}(s) d s=d \rho_{i}$ (inverting the integral).

Multichannel MC

Now rewrite

$$
\begin{aligned}
\int_{s_{0}}^{s_{1}} f(s) d s & =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g(s) d s \\
& =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} \sum_{i} \alpha_{i} g_{i}(s) d s \\
& =\sum_{i} \alpha_{i} \int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g_{i}(s) d s
\end{aligned}
$$

Now $g_{i}(s) d s=d \rho_{i}$ (inverting the integral).
Select the distribution $g_{i}(s)$ you'd like to sample next event from acc to weights α_{i}.
α_{i} can be optimized after a number of trials.

Multichannel MC

Works quite well:

Some Remarks/Real Life MC

- Didn't discuss random number generators. Please make sure to use 'good' random numbers.
- Didn't discuss stratified sampling (VEGAS). Sample where variance is biggest. (not necessarily where PS is most populated).
- Only discussed one-dimensional case here. N-particle PS has $3 N-4$ dimensions...
- Didn't discuss tools geared towards this, like RAMBO (generates flat N particles PS).
- generalisation straightforward, particularly MCError $\sim \frac{1}{\sqrt{N}}$, compare eg Trapezium rule Error $\sim \frac{1}{N^{2 / D}}$.
- Many important techniques covered here in detail! Should be good starting point.

Hard Scattering

Hard scattering

Hard scattering

Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs $(O(1))$.

- OK for very inclusive observables.

Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs $(O(1))$.

- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC (O(100)).

Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs $(O(1))$.

- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC (O(100)).
- Want arbitrary cuts.
- \rightarrow use Monte Carlo methods.

Matrix elements

Where do we get (LO) $|M|^{2}$ from?

- Most/important simple processes (SM) are 'built in'.
- Calculate yourself (≤ 3 particles in final state).
- Matrix element generators:
- MadGraph/MadEvent.
- Comix/AMEGIC (part of Sherpa).
- HELAC/PHEGAS.
- Whizard.
- CalcHEP/CompHEP.
generate code or event files that can be further processed.
- \rightarrow FeynRules interface to ME generators.

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \quad \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \Theta(\text { cuts }) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \Theta(\text { cuts }) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

now,

$$
\frac{1}{F} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}=J(\vec{x}) \prod_{i=1}^{3 n-2} \mathrm{~d} x_{i} \quad\left(\mathrm{~d} \Phi_{n}=(2 \pi)^{4} \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \vec{p}}{(2 \pi)^{3} 2 E_{i}}\right)
$$

such that

$$
\begin{aligned}
\sigma & =\int g(\vec{x}) \mathrm{d}^{3 n-2} \vec{x}, \quad\left(g(\vec{x})=J(\vec{x}) f_{i} f_{j} \bar{\sum}|M|^{2} \Theta(\text { cuts })\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{g\left(\vec{x}_{i}\right)}{p\left(\vec{x}_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} w_{i}
\end{aligned}
$$

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \Theta(\text { cuts }) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

now,

$$
\frac{1}{F} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}=J(\vec{x}) \prod_{i=1}^{3 n-2} \mathrm{~d} x_{i} \quad\left(\mathrm{~d} \Phi_{n}=(2 \pi)^{4} \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \vec{p}}{(2 \pi)^{3} 2 E_{i}}\right)
$$

such that

$$
\begin{aligned}
\sigma & =\int g(\vec{x}) \mathrm{d}^{3 n-2} \vec{x}, \quad\left(g(\vec{x})=J(\vec{x}) f_{i} f_{j} \bar{\sum}|M|^{2} \Theta(\text { cuts })\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{g\left(\vec{x}_{i}\right)}{p\left(\vec{x}_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} w_{i}
\end{aligned}
$$

We generate events \vec{x}_{i} with weights w_{i}.

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_{i} with probability

$$
P_{i}=\frac{w_{i}}{w_{\max }}
$$

Generate events with same frequency as in nature!

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_{i} with probability

$$
P_{i}=\frac{w_{i}}{w_{\max }}
$$

where $w_{\max }$ has to be chosen sensibly.
\rightarrow reweighting, when $\max \left(w_{i}\right)=\bar{w}_{\max }>w_{\text {max }}$, as

$$
P_{i}=\frac{w_{i}}{\bar{w}_{\max }}=\frac{w_{i}}{w_{\max }} \cdot \frac{w_{\max }}{\bar{w}_{\max }}
$$

i.e. reject events with probability $\left(w_{\max } / \bar{w}_{\max }\right)$ afterwards. (can be ignored when \#(events with $w_{i}>\bar{w}_{\max }$) small.)

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_{i} with probability

$$
P_{i}=\frac{w_{i}}{w_{\max }}
$$

Generate events with same frequency as in nature!

Matrix elements

Some comments:

- Use techniques from above to generate events efficiently. Goal: small variance in w_{i} distribution!

Matrix elements

Some comments:

- Use techniques from above to generate events efficiently. Goal: small variance in w_{i} distribution!
- Clear from above: efficient generation closely tied to knowledge of $f\left(\vec{x}_{i}\right)$, i.e. the matrix element's propagator structure.
\rightarrow build phase space generator already while generating ME's automatically.

Parton Showers

Hard matrix element

Hard matrix element \rightarrow parton showers

Parton showers

Quarks and gluons in final state, pointlike.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\mathrm{TeV} \rightarrow 1 \mathrm{GeV}$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\mathrm{TeV} \rightarrow 1 \mathrm{GeV}$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.
Dominated by large logs, terms

$$
\alpha_{S}^{n} \log ^{2 n} \frac{Q}{Q_{0}} \sim 1
$$

Generated from emissions ordered in Q.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\mathrm{TeV} \rightarrow 1 \mathrm{GeV}$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.
Dominated by large logs, terms

$$
\alpha_{S}^{n} \log ^{2 n} \frac{Q}{Q_{0}} \sim 1
$$

Generated from emissions ordered in Q.
Soft and / or collinear emissions.

$e^{+} e^{-}$annihilation

Good starting point: $e^{+} e^{-} \rightarrow q \bar{q} g:$
Final state momenta in one

$$
\left(x_{1}, x_{2}\right)=\left(x_{q}, x_{\bar{q}}\right) \text {-plane: }
$$

plane (orientation usually averaged).
Write momenta in terms of

$$
\begin{gathered}
x_{i}=\frac{2 p_{i} \cdot q}{Q^{2}} \quad(i=1,2,3) \\
0 \leq x_{i} \leq 1, x_{1}+x_{2}+x_{3}=2 \\
q=(Q, 0,0,0) \\
Q \equiv E_{c m}
\end{gathered}
$$

Fig: momentum configuration of q, \bar{q} and g for given point $\left(x_{1}, x_{2}\right), \bar{q}$ direction fixed.

$e^{+} e^{-}$annihilation

Differential cross section:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x_{1} \mathrm{~d} x_{2}}=\sigma_{0} \frac{C_{F} \alpha_{S}}{2 \pi} \frac{x_{1}+x_{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Collinear singularities: $x_{1} \rightarrow 1$ or $x_{2} \rightarrow 1$. Soft singularity: $x_{1}, x_{2} \rightarrow 1$.

$e^{+} e^{-}$annihilation

Differential cross section:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x_{1} \mathrm{~d} x_{2}}=\sigma_{0} \frac{C_{F} \alpha_{S}}{2 \pi} \frac{x_{1}+x_{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Collinear singularities: $x_{1} \rightarrow 1$ or $x_{2} \rightarrow 1$. Soft singularity: $x_{1}, x_{2} \rightarrow 1$.

Rewrite in terms of x_{3} and $\theta=\angle(q, g)$:
$\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta \mathrm{d} x_{3}}=\sigma_{0} \frac{C_{F} \alpha_{S}}{2 \pi}\left[\frac{2}{\sin ^{2} \theta} \frac{1+\left(1-x_{3}\right)^{2}}{x_{3}}-x_{3}\right]$
Singular as $\theta \rightarrow 0$ and $x_{3} \rightarrow 0$.

$e^{+} e^{-}$annihilation

Can separate into two jets as

$$
\begin{aligned}
\frac{2 \mathrm{~d} \cos \theta}{\sin ^{2} \theta} & =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \theta}{1+\cos \theta} \\
& =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \bar{\theta}}{1-\cos \bar{\theta}} \\
& \approx \frac{\mathrm{d} \theta^{2}}{\theta^{2}}+\frac{\mathrm{d} \bar{\theta}^{2}}{\bar{\theta}^{2}}
\end{aligned}
$$

$e^{+} e^{-}$annihilation

Can separate into two jets as

$$
\begin{aligned}
\frac{2 d \cos \theta}{\sin ^{2} \theta} & =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \theta}{1+\cos \theta} \\
& =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \bar{\theta}}{1-\cos \bar{\theta}} \\
& \approx \frac{\mathrm{d} \theta^{2}}{\theta^{2}}+\frac{\mathrm{d} \bar{\theta}^{2}}{\bar{\theta}^{2}}
\end{aligned}
$$

So, we rewrite $\mathrm{d} \sigma$ in collinear limit as

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} C_{F} \frac{1+(1-z)^{2}}{z^{2}} \mathrm{~d} z
$$

$e^{+} e^{-}$annihilation

Can separate into two jets as

$$
\begin{aligned}
\frac{2 \mathrm{~d} \cos \theta}{\sin ^{2} \theta} & =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \theta}{1+\cos \theta} \\
& =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \bar{\theta}}{1-\cos \bar{\theta}} \\
& \approx \frac{\mathrm{d} \theta^{2}}{\theta^{2}}+\frac{\mathrm{d} \bar{\theta}^{2}}{\bar{\theta}^{2}}
\end{aligned}
$$

So, we rewrite $\mathrm{d} \sigma$ in collinear limit as

$$
\begin{aligned}
\mathrm{d} \sigma & =\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} C_{F} \frac{1+(1-z)^{2}}{z^{2}} \mathrm{~d} z \\
& =\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
\end{aligned}
$$

with DGLAP splitting function $P(z)$.

Collinear limit

Universal DGLAP splitting kernels for collinear limit:

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
$$

$$
P_{q \rightarrow q g}(z)=C_{F} \frac{1+z^{2}}{1-z}
$$

$$
P_{q \rightarrow g q}(z)=C_{F} \frac{1+(1-z)^{2}}{z}
$$

$$
P_{g \rightarrow q q}(z)=T_{R}(1-2 z(1-z))
$$

Collinear limit

Universal DGLAP splitting kernels for collinear limit:

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
$$

Note: Other variables may equally well characterize the collinear limit:

$$
\frac{\mathrm{d} \theta^{2}}{\theta^{2}} \sim \frac{\mathrm{~d} Q^{2}}{Q^{2}} \sim \frac{\mathrm{~d} p_{\perp}^{2}}{p_{\perp}^{2}} \sim \frac{\mathrm{~d} \tilde{q}^{2}}{\tilde{q}^{2}} \sim \frac{\mathrm{~d} t}{t}
$$

whenever $Q^{2}, p_{\perp}^{2}, t \rightarrow 0$ means "collinear".

Collinear limit

Universal DGLAP splitting kernels for collinear limit:

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
$$

Note: Other variables may equally well characterize the collinear limit:

$$
\frac{\mathrm{d} \theta^{2}}{\theta^{2}} \sim \frac{\mathrm{~d} Q^{2}}{Q^{2}} \sim \frac{\mathrm{~d} p_{\perp}^{2}}{p_{\perp}^{2}} \sim \frac{\mathrm{~d} \tilde{q}^{2}}{\tilde{q}^{2}} \sim \frac{\mathrm{~d} t}{t}
$$

whenever $Q^{2}, p_{\perp}^{2}, t \rightarrow 0$ means "collinear".

- θ : HERWIG
- $Q^{2}:$ PYTHIA ≤ 6.3, old SHERPA.
- $p_{\perp}:$ PYTHIA ≥ 6.4, ARIADNE,

Catani-Seymour showers in HERWIG++ and SHERPA.

- \tilde{q} : Herwig++.

Resolution

Need to introduce resolution t_{0}, e.g. a cutoff in p_{\perp}. Prevent us from the singularity at $\theta \rightarrow 0$.
Emissions below t_{0} are unresolvable.
Finite result due to virtual corrections:

unresolvable + virtual emissions are included in Sudakov form factor via unitarity (see below!).

Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

$$
\sigma_{2+1}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}} \int_{z_{-}}^{z_{+}} \mathrm{d} z \frac{\alpha_{S}}{2 \pi} \hat{P}(z)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \mathrm{~d} t W(t)
$$

Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

$$
\sigma_{2+1}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}} \int_{z_{-}}^{z_{+}} \mathrm{d} z \frac{\alpha_{S}}{2 \pi} \hat{P}(z)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \mathrm{~d} t W(t)
$$

Simple example:
Multiple photon emissions, strongly ordered in t.
We want

$$
W_{\text {sum }}=\sum_{n=1} W_{2+n}=\frac{\int|\sim|^{2} \mathrm{~d} \Phi_{1}+\int|\approx|^{2} \mathrm{~d} \Phi_{2}+\int|\approx|^{2} \mathrm{~d} \Phi_{3}+\cdots}{|\sim|^{2}}
$$

for any number of emissions.

Towards multiple emissions

$$
W_{2+1}=\left(\int|\sim|^{2}+\left|\left\langle\left.\right|^{2} \mathrm{~d} \Phi_{1}\right) /|\quad /|^{2}=\frac{2}{1!} \int_{t_{0}}^{t} \mathrm{~d} t W(t)\right.\right.
$$

Towards multiple emissions

$$
\begin{aligned}
& (n=1) \\
& W_{2+1}=\left(\int\left\langle\left.\nmid\right|^{2}+\right|\left\langle\left.\right|^{2} \mathrm{~d} \Phi_{1}\right) /|\sigma|^{2}=\frac{2}{1!} \int_{t_{0}}^{t} \mathrm{~d} t W(t) .\right. \\
& (n=2) \approx \\
& W_{2+2}=\left(\int|\kappa|^{2}+|\approx|^{2}+|\approx|^{2}+\left|\left\langle\left.\approx\right|^{2} \mathrm{~d} \Phi_{2}\right) /|\sigma|^{2}\right.\right. \\
& =2^{2} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \int_{t_{0}}^{t^{\prime}} \mathrm{d} t^{\prime \prime} W\left(t^{\prime}\right) W\left(t^{\prime \prime}\right)=\frac{2^{2}}{2!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{2} .
\end{aligned}
$$

We used

$$
\int_{t_{0}}^{t} \mathrm{~d} t_{1} \ldots \int_{t_{0}}^{t_{n-1}} \mathrm{~d} t_{n} W\left(t_{1}\right) \ldots W\left(t_{n}\right)=\frac{1}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n} .
$$

Towards multiple emissions

Easily generalized to n emissions

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

Towards multiple emissions

Easily generalized to n emissions
等 by induction. i.e.

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

So, in total we get

$$
\sigma_{>2}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}=\sigma_{2}\left(t_{0}\right)\left(\mathrm{e}^{2 \int_{t_{0}}^{t} \mathrm{~d} t W(t)}-1\right)
$$

Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

So, in total we get

$$
\begin{aligned}
\sigma_{>2}\left(t_{0}\right) & =\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}=\sigma_{2}\left(t_{0}\right)\left(\mathrm{e}^{2 \int_{t_{0}}^{t} \mathrm{~d} t W(t)}-1\right) \\
& =\sigma_{2}\left(t_{0}\right)\left(\frac{1}{\Delta^{2}\left(t_{0}, t\right)}-1\right)
\end{aligned}
$$

Sudakov Form Factor
$\Delta\left(t_{0}, t\right)=\exp \left[-\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right]$

Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

So, in total we get

$$
\begin{aligned}
\sigma_{>2}\left(t_{0}\right) & =\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}=\sigma_{2}\left(t_{0}\right)\left(\mathrm{e}^{2 \int_{t_{0}}^{t} \mathrm{~d} t W(t)}-1\right) \\
& =\sigma_{2}\left(t_{0}\right)\left(\frac{1}{\Delta^{2}\left(t_{0}, t\right)}-1\right)
\end{aligned}
$$

Sudakov Form Factor in QCD

$$
\Delta\left(t_{0}, t\right)=\exp \left[-\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right]=\exp \left[-\int_{t_{0}}^{t} \frac{\mathrm{~d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z\right]
$$

Sudakov form factor

Note that

$$
\begin{aligned}
\sigma_{\mathrm{all}} & =\sigma_{2}+\sigma_{>2}=\sigma_{2}+\sigma_{2}\left(\frac{1}{\Delta^{2}\left(t_{0}, t\right)}-1\right) \\
& \Rightarrow \Delta^{2}\left(t_{0}, t\right)=\frac{\sigma_{2}}{\sigma_{\mathrm{all}}}
\end{aligned}
$$

Two jet rate $=\Delta^{2}=P^{2}\left(\right.$ No emission in the range $\left.t \rightarrow t_{0}\right)$.

Sudakov form factor $=$ No emission probability.

Often $\Delta\left(t_{0}, t\right) \equiv \Delta(t)$.

- Hard scale t, typically CM energy or p_{\perp} of hard process.
- Resolution t_{0}, two partons are resolved as two entities if inv mass or relative p_{\perp} above t_{0}.
- $P^{2}(\operatorname{not} P)$, as we have two legs that evolve independently.

