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The	
  Standard	
  Model	
  likely	
  suffers	
  from	
  a	
  
Naturalness	
  Problem	
  (mH	
  <<	
  Mpl	
  –	
  see	
  next	
  
lecture)	
  
	
  
We	
  need	
  to	
  invoke	
  addi(onal	
  principles,	
  and	
  
perhaps	
  addi(onal	
  par(cles	
  and	
  forces	
  to	
  render	
  
theory	
  Natural.	
  
	
  
This	
  lecture	
  discusses	
  some	
  main	
  ideas	
  for	
  that	
  
and	
  their	
  status,	
  as	
  well	
  as	
  the	
  status	
  of	
  
Naturalness	
  itself.	
  



Higgs	
  boson	
  unstable	
  to	
  QM	
  

A	
  quantum	
  loop	
  is	
  quadra(cally	
  divergent.	
  	
  Higgs	
  mass,	
  
connected	
  to	
  Higgs	
  vev,	
  is	
  unstable	
  to	
  the	
  highest	
  mass	
  
scales	
  in	
  the	
  theory.	
  

Confusing:	
  MPl	
  is	
  1016	
  (mes	
  more	
  massive	
  than	
  weak	
  scale.	
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1 Introduction

The discovery of the Higgs boson (Aad 2012, Chatrchyan 2012) and nothing
else exotic so far (Soni 2013) has put to rest questions of the existence of the
Higgs boson, and rejuvenated questions about its viability without additional
dynamics beyond the Standard Model. The Higgs boson is special compared
to other elementary particles in that its quantum corrections are quadratically
sensitive to high scales1. This leads to what many perceive to be a naturalness
problem for the Higgs boson.

To be more precise, if we compute in quantum field theory the self-energy
of the Higgs boson field, we find that the Higgs mass is

m2
H = m2

bare +
y2t

16⇡2
⇤2 + �O(m2

weak) (1)

where mH is the Higgs boson mass with measured value 125GeV, mbare is the
Higgs boson bare mass parameter of the unrenormalized lagrangian, yt is the
top quark Yukawa coupling with value close to 1, ⇤ is the cuto↵ value of mo-
mentum in the top quark loop of the Higgs boson self energy, and �O(m2

weak)
are all other quantum corrections, where mweak is meant to designate the
weak scale2. Eq. 1 is explicitly highlighting the contributions to the Higgs
boson mass from the top quark loop, but there are many more contributions.

The naturalness argument suggests that if the SM is a valid theory up to
a very high scale, say ⇤ ⇠ MPl ⇠ 1018 GeV, then m2

bare has to be a very
large and extraordinarily fine-tuned number to cancel the very large contribu-
tion y2t⇤

2/16⇡2, thereby reproducing the small Higgs boson mass of 125GeV.
There is no equivalently disquieting equation in particle physics seemingly re-
quiring such dramatic fine-tuning of quantum corrections. Only the cosmolog-
ical constant has perhaps more mystery of such large discrepancies compared
to expectations.

1 For historical overview of the how understanding developed over time of the quantum
corrections of scalars and the Higgs boson see Giudice (2008).

2 When precision of speech is requested we can define mweak = 100GeV. This scale
is chosen parametrically to be close to the numerical values of the W and Z boson masses
mW = 80GeV and mZ = 91GeV, the top quark mass mt = 175GeV, the Higgs boson mass
mH = 125GeV and the Higgs boson vacuum expectation value v = 246GeV, normalized to
be the value around which the dynamical Higgs field is expanded in the lagrangian.

�L = m2
bareH

†H (1)

1

Schema(cally:	
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Cures	
  of	
  the	
  Naturalness	
  Problem,	
  and	
  the	
  
Resul(ng	
  Higgs	
  boson	
  Entourage	
  

1.  Disallow	
  all	
  scalars	
  in	
  the	
  theory	
  (Technicolor).	
  

2.  Symmetry	
  cancels	
  quadra(c	
  divergences	
  (supersymmetry)	
  

3.  Disallow	
  higher	
  mass	
  scales	
  (extra	
  dimensions).	
  
	
  	
  	
  	
  	
  	
  	
  

Implica(on:	
  “New	
  Physics”	
  needs	
  to	
  be	
  found	
  at	
  LHC.	
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Statics and Dynamics of Higgs Mass 

Principle: SUSY, Xdim,  
Little Higgs, Compositeness, etc. 

Top squarks, radion, 
T-odd top partners, etc. Gluinos, KK Gravitons, etc. 

SUSY: + 
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But	
  nothing	
  else	
  has	
  been	
  found….	
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Losing	
  the	
  Naturalness	
  Religion	
  

Star(ng	
  to	
  hear	
  many	
  more	
  comments	
  like:	
  
	
  
“Quadra(c	
  divergence	
  Naturalness	
  problem	
  is	
  just	
  
philosophical	
  –	
  not	
  really	
  a	
  data-­‐driven	
  concern.”	
  
	
  
“Dimensional	
  regulariza(on	
  has	
  no	
  quadra(c	
  divergence	
  
Naturalness	
  problem,	
  so	
  maybe	
  it	
  doesn’t	
  exist”	
  

m2
W

✓
1

4� n
� �E + ln 4⇡ + 1� ln

m2
W

µ2

◆
+ · · · (1)

1

W	
  H	
   H	
   à	
  

(Note,	
  there	
  is	
  no	
  Λ2	
  cutoff	
  funny	
  business	
  –	
  only	
  1/(4-­‐n))	
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Cf.	
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Gravity	
  and	
  Naturalness	
  

Common	
  worry:	
  loop	
  momentum	
  cut	
  off	
  by	
  gravity	
  scale	
  
	
  
Λ  =	
  Mpl	
  =	
  (GN)-­‐1/2	
  	
  ~	
  	
  1018	
  GeV	
  which	
  is	
  much	
  higher	
  than	
  	
  
Mweak	
  =	
  MH	
  =	
  102	
  GeV.	
  
	
  
However:	
  
-­‐  Gravity	
  is	
  remote	
  
-­‐  Gravity	
  is	
  not	
  exactly	
  like	
  our	
  normal	
  gauge	
  theories	
  
-­‐  Gravity	
  is	
  mysterious	
  –	
  especially	
  quantum	
  gravity	
  
	
  
Cri$cism:	
  We	
  do	
  not	
  know	
  enough	
  about	
  gravity	
  to	
  use	
  it	
  to	
  cri(cize	
  
the	
  Higgs	
  boson’s	
  naturalness.	
  Throw	
  out	
  gravity	
  considera(ons.	
  

2 James D. Wells
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New	
  Charged	
  States	
  

Surely	
  the	
  par(cles	
  we	
  know	
  of	
  are	
  not	
  everything.	
  For	
  
example,	
  nothing	
  prevents	
  us	
  from	
  having	
  a	
  large	
  number	
  of	
  
“vectorlike	
  states”	
  at	
  high	
  mass	
  (mass	
  not	
  given	
  by	
  Higgs	
  
boson).	
  

F

H

F

H

Figure 1.2: Two-loop corrections to the Higgs squared mass parameter involving a heavy fermion F
that couples only indirectly to the Standard Model Higgs through gauge interactions.

largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from ⟨H⟩, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

S ln(ΛUV/mS) + . . .
]
. (1.3)

If one rejects the possibility of a physical interpretation of ΛUV and uses dimensional regularization
on the loop integral instead of a momentum cutoff, then there will be no Λ2

UV piece. However, even
then the term proportional to m2

S cannot be eliminated without the physically unjustifiable tuning of
a counter-term specifically for that purpose. So m2

H is sensitive to the masses of the heaviest particles
that H couples to; if mS is very large, its effects on the Standard Model do not decouple, but instead
make it difficult to understand why m2

H is so small.
This problem arises even if there is no direct coupling between the Standard Model Higgs boson

and the unknown heavy particles. For example, suppose there exists a heavy fermion F that, unlike
the quarks and leptons of the Standard Model, has vector-like quantum numbers and therefore gets a
large mass mF without coupling to the Higgs field. [In other words, an arbitrarily large mass term of
the form mFFF is not forbidden by any symmetry, including weak isospin SU(2)L.] In that case, no
diagram like Figure 1.1a exists for F . Nevertheless there will be a correction to m2

H as long as F shares
some gauge interactions with the Standard Model Higgs field; these may be the familiar electroweak
interactions, or some unknown gauge forces that are broken at a very high energy scale inaccessible to
experiment. In either case, the two-loop Feynman diagrams in Figure 1.2 yield a correction

∆m2
H = CHTF

(
g2

16π2

)2 [
aΛ2

UV + 24m2
F ln(ΛUV/mF ) + . . .

]
, (1.4)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

4

A	
  vectorlike	
  fermion	
  feeds	
  into	
  the	
  Higgs	
  mass	
  at	
  two	
  loops	
  
through	
  gauge	
  interac(ons.	
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4

We	
  see	
  that	
  the	
  Higgs	
  mass	
  is	
  quadra(cally	
  sensi(ve	
  to	
  the	
  mass	
  of	
  
the	
  “vectorlike	
  fermion”.	
  This	
  is	
  a	
  serious	
  concern.	
  
	
  
However:	
  
-­‐  It	
  is	
  rather	
  narrow	
  to	
  get	
  worked	
  up	
  about	
  SM	
  charged	
  par(cles	
  
-­‐  Perhaps	
  we	
  know	
  all	
  the	
  par(cles	
  charged	
  under	
  the	
  SM	
  

Cri$cism:	
  It	
  is	
  plausibly	
  unfair	
  to	
  cri(cize	
  the	
  Higgs	
  by	
  invoking	
  
specula(ve	
  new	
  par(cles	
  that	
  just	
  happen	
  to	
  be	
  charged	
  under	
  the	
  
SM.	
  

11	
  



Where	
  we	
  are	
  at:	
  
	
  
Naturalness	
  for	
  a	
  stand-­‐alone	
  Higgs	
  boson	
  has	
  been	
  a	
  concern.	
  
	
  
However,	
  perhaps	
  one	
  shouldn’t	
  invoke	
  gravity	
  in	
  the	
  argument.	
  
	
  
	
  è	
  consider	
  the	
  possibility	
  that	
  gravity	
  induces	
  no	
  Naturalness	
  
problems.	
  
	
  
And,	
  perhaps	
  one	
  shouldn’t	
  invoke	
  new	
  states	
  charged	
  under	
  the	
  
SM	
  in	
  the	
  argument.	
  
	
  
è Assume	
  that	
  extra	
  SM	
  charged	
  states	
  do	
  not	
  exist.	
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What	
  does	
  that	
  leave	
  us	
  with:	
  
	
  
A	
  ques(on.	
  What	
  about	
  the	
  addi(on	
  of	
  many	
  extra	
  states	
  
not	
  charged	
  under	
  the	
  SM?	
  Is	
  there	
  a	
  naturalness	
  concern?	
  
	
  
The	
  answer	
  is	
  mostly	
  no	
  (some	
  subtle(es	
  at	
  play),	
  but	
  one	
  
generic	
  and	
  serious	
  concern	
  remains:	
  	
  
	
  
the	
  prolifera(on	
  of	
  scalar	
  bosons	
  like	
  the	
  Higgs	
  boson.	
  
	
  
This	
  can	
  be	
  called	
  the	
  “Higgs	
  boson	
  prolifera(on	
  instability	
  
problem”.	
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Sensi(vity	
  to	
  higher	
  physical	
  scales	
  persists	
  

All	
  it	
  takes	
  is	
  for	
  any	
  massive	
  par(cle	
  to	
  interact	
  with	
  the	
  Higgs	
  
and	
  there	
  is	
  a	
  real	
  physical	
  quantum	
  correc(on	
  to	
  contend	
  
with.	
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It	
  is	
  inconceivable	
  to	
  me	
  that	
  there	
  is	
  nothing	
  else	
  between	
  
“here”	
  (102	
  GeV)	
  and	
  the	
  Planck	
  scale	
  (1018	
  GeV).	
  And	
  if	
  there	
  
is	
  another	
  scalar	
  (even	
  if	
  exo(cally	
  charged!)	
  there	
  is	
  no	
  
simple	
  symmetry	
  to	
  forbid	
  it	
  from	
  coupling	
  to	
  the	
  Higgs	
  
boson.	
   14	
  



Finetuning	
  of	
  Mass	
  Scales	
  Naturalness and the Higgs Boson Proliferation Instability Problem 7

to coupling it with the SM Higgs boson H at the renormalizable level. The
resulting scalar potential is

V = �µ2
H |H|2 � µ2

�|�|2 + ⌘|H|2|�|2 + �H |H|4 + ��|�|4. (2)

Assuming hHi = v and h�i = ⇠, the minimization conditions for this potential
are

�µ2
H +

⌘

2
⇠2 + �Hv2 = 0

�µ2
� +

⌘

2
v2 + ��⇠

2 = 0 (3)

These two equations must be satisfied to be at the stable minimum of the
potential.

If we assume all dimensionless couplings are O(1) and µ2
� ⇠ ⇠2 � v2,

we have a serious problem with eq. 3. There is no reason to discount the
prospect of even many condensing scalars with vacuum expectation values as
high as the Planck scale, 1018 GeV, which is sixteen orders of magnitude higher
than the weak scale mweak, but even just this one extra field is destabilizing.
Somehow the large µ2

H�⌘⇠2/2 first two terms in the first minimization equation
above must cancel each other to a large fine-tuned degree in order to match
in magnitude the much smaller �v2 term so that the minimization condition
is satisfied. There are only two solutions to this problem. One, we accept a
serious fine-tuning of the parameters such that this cancelation occurs. Or,
assume that for some reason the mixing ⌘ between the Higgs and any other
condensing scalar is small so that every term of that first equation is of the
same order O(m2

H). The mixing has to be at least as small as ⌘ ⇠ v2/⇠2.
There are strong arguments against both solutions to this proliferation

problem. And as alluded to above, the problem gets much worse as the num-
ber of condensing scalars increases. The first solution assumes an accidental
fine-tuned cancellation among terms that is hard to imagine in even just one
equation. However, if we had n scalars then there would be n such minimiza-
tion equations, all requiring similarly spectacular fine-tuned cancellations. The
small mixing solution is less than desirable also, because if there are n such
scalars then we have to assume that there is at least the same small mixing for
every one of them. This is no longer accidental but systematic, and so must
involve a principle. This principle is unknown from the point of view of the
SM and thus is not satisfactory unless “new physics” is invoked.

We should remark that even non-condensing scalars when coupled to the
Higgs boson, as in eq. 2, will contribute through one-loop finite quantum e↵ects
to the mass of the Higgs boson as illustrated, for example, in Martin (1997).
If they coupling to the Higgs boson at O(1) strength and have mass greater
than a few TeV, the Higgs mass scale is destabilized in that case as well.

5 Genericness of proliferation

Another response to the proliferation problem is to assume that there simply
is no proliferation of Higgs bosons in nature, and so no proliferation instability
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Another	
  example	
  :	
  scalar	
  poten(al	
  for	
  the	
  SM	
  Higgs	
  boson	
  H	
  and	
  the	
  
condensing	
  exo(c	
  boson	
  Φ.	
  

The	
  Minimiza(on	
  condi(ons	
  from	
  dV/dH	
  =	
  0	
  and	
  dV/dΦ =	
  0	
  yield.	
  

where	
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-­‐(10,000.787	
  GeV)2	
  +	
  (10,000	
  GeV)2	
  +	
  0.26*(246	
  GeV)2	
  =	
  0	
  
Or,	
  
-­‐	
  100,015,734	
  +	
  100,000,000	
  +	
  15,734	
  =	
  0	
   15	
  

(~10	
  TeV	
  exo(c	
  masses)	
  



The	
  extraordinary	
  finetuning	
  to	
  make	
  these	
  condi(ons	
  work	
  out	
  
cons(tutes	
  a	
  naturalness	
  problem.	
  
	
  
The	
  addi(on	
  of	
  more	
  scalars	
  makes	
  the	
  problem	
  even	
  worse.	
  
	
  
This	
  is	
  the	
  prolifera(on	
  problem,	
  and	
  it	
  only	
  goes	
  away	
  if	
  you	
  
believe	
  	
  
	
  
1)	
  there	
  are	
  no	
  other	
  scalars	
  in	
  nature	
  (“unlikely”),	
  or	
  	
  
2)	
  there	
  is	
  a	
  principle	
  that	
  generically	
  keeps	
  |H|2|Φ|2	
  type	
  of	
  
terms	
  in	
  check	
  (new	
  physics!!)	
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Solu(ons	
  to	
  the	
  Prolifera(on	
  Problem	
  

Not	
  surprisingly,	
  they	
  are	
  similar	
  to	
  the	
  solu(ons	
  of	
  the	
  general	
  
Naturalness	
  problem.	
  
	
  
1)  No	
  fundamental	
  scalars	
  in	
  the	
  spectrum	
  (technicolor/

composite	
  Higgs)	
  

2)  Extra	
  dimensions:	
  this	
  is	
  actually	
  not	
  as	
  pleasant	
  since	
  a	
  slew	
  
of	
  scalars	
  at	
  a	
  few	
  TeV	
  can	
  be	
  very	
  destabilizing	
  

3)  Supersymmetry:	
  this	
  theory	
  elegantly	
  solves	
  the	
  problem.	
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Composite	
  Higgs	
  Theories	
  
First,	
  a	
  few	
  words	
  on	
  composite	
  Higgs	
  theories.	
  
	
  	
  
Higgs	
  boson	
  as	
  pNGB	
  of	
  GàH	
  breaking	
  at	
  scale	
  f.	
  
	
  
Resonances	
  at	
  scale	
  f:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  
	
  
Higgs	
  poten(al	
  generated	
  
	
  
where,	
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This	
  is	
  the	
  challenge	
  with	
  composite	
  theories:	
  
	
  
Although	
  v	
  ~	
  f	
  is	
  the	
  naïve	
  expecta(on,	
  we	
  need	
  f	
  >>	
  v.	
  
	
  
Why?	
  FCNC	
  issues.	
  

crucially depends on the mechanism employed to generate the SM Yukawas (see Sec. 4).

6.2.1 4-Fermi operators

It has been long known that a simple mechanism to generate the interactions in Eq. (4.1)

gives rise also to unsuppressed SM flavor violating 4-Fermi interactions

cijkl

⇤2
F

qiqj q̄kq̄l (6.8)

which generically violate the stringent flavor constraints: for instance from the Kaon sys-

tem, ⇤F > 103�5 TeV, while allowing for a su�ciently large top mass one would need ⇤F =

O(10) TeV. As explained in Sec. 4.1, this tension can be relaxed if the dimension of the

operator O in Eq. (4.1) is su�ciently close to one, as long as the dimension of O2 does not

decrease below four hence reintroducing the hierarchy problem.

It is worth mentioning that other alternatives might be viable, which rely on the flavor

dynamics inducing additional suppression of the operators in Eq. (6.8), either via the Yukawa

couplings, cijkl ⇠ yij
u,d ykl

u,d, in which case the bounds on ⇤F can be relaxed close to the scale

required to reproduce the top mass, or e↵ectively imposing MFV, which could be realized if

the couplings of the standard model fermions to the strong dynamics arise from the exchange

of (supersymmetric) heavy scalars, such as in bosonic technicolor [111]. In the former case

new physics is to be expected in flavor transitions, while in the latter supersymmetric states

remnant of the flavor generation should be observable.

6.2.2 Anarchic partial compositeness

As discussed in Sec. 4.2, the RS-GIM mechanism of partial compositeness significantly re-

duces the contributions to dangerous flavor transitions. However, it has been shown that the

suppression is not quite enough as to provide a fully realistic theory of flavor. Even though

�F = 2 4-Fermi operators

f i
qf

†j
q fk

q f l†
q

g2
⇢

m2
⇢

q̄iqj q̄kql (6.9)

are e↵ectively suppressed by four powers of the fermion masses m/v or CKM entries VCKM ,

measurements of CP violation in the Kaon system, ✏K , put stringent bounds on the LR

operators in Eq. (6.9), of the form m⇢ & 10 g⇢

Yd
TeV [56, 60, 81, 112, 113], as well on LL op-

erators. Although less significant, qualitatively similar bounds on LL operators arise from

CP violation in the B system, m⇢ & 1 g⇢

Yu
TeV. Given the expectation m⇢ ⇠ g⇢f , these type

of constraints bound the combination Yd,uf . In explicit constructions of the pGB Higgs, the
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  f	
  greater	
  than	
  ~	
  10	
  TeV	
  probably	
  needed	
  	
  è	
  

Bellazzini,	
  Csaki,	
  Serra,	
  `14	
  	
  

m⇢ ⇠ g⇢f 1 <⇠ g⇢ <⇠ 4⇡

V (H) = �µ2|H|2 + �|H|4

µ2 ⇠ g2SM
16⇡2

g2⇢f
2 � ⇠ g2SM

16⇡2
g2⇢

hHi = v =

r
µ2

�
⇠ f

v2

f 2
<⇠ 10�3

1



Significant	
  interes(ng	
  model	
  building	
  in	
  composite	
  Higgs	
  	
  
theories.	
  
	
  
The	
  theories	
  are	
  s(ll	
  viable.	
  
	
  
Tuning	
  requirements	
  to	
  achieve	
  v2	
  <<	
  f2	
  are	
  analogous	
  to	
  
susy’s	
  v2	
  <<	
  msusy2	
  (if	
  indeed	
  that	
  is	
  required).	
  
	
  
Compositeness	
  affects	
  Higgs	
  couplings	
  to	
  vector	
  bosons	
  and	
  
fermions	
  with	
  shius	
  of	
  order	
  v2/f2,	
  which	
  can	
  be	
  O(few	
  %).	
  
	
  



Many	
  alterna(ve	
  EWSB	
  ideas	
  allow	
  or	
  even	
  
require	
  more	
  Higgs	
  bosons.	
  
	
  
1)	
  Either	
  extra	
  singlets	
  under	
  the	
  SM	
  
symmetries.	
  
	
  
2)	
  Or,	
  extra	
  scalars	
  charged	
  under	
  the	
  SM	
  –	
  in	
  
par(cular	
  extra	
  doublets.	
  
	
  
Supersymmetry	
  example	
  of	
  this	
  2nd	
  type.	
  



First:	
  How	
  SUSY	
  Solves	
  the	
  	
  
Higgs/scalar	
  Prolifera(on	
  Problem	
  
Supersymmetry	
  is	
  symmetry	
  between	
  bosons	
  (even	
  spin	
  par(cles,	
  such	
  as	
  W,	
  Z,	
  H)	
  
and	
  fermions	
  (half-­‐integer	
  spin	
  par(cles,	
  such	
  as	
  electron,	
  muon	
  and	
  top	
  quark).	
  
	
  
Supersymmetry	
  invariance	
  manifest	
  when	
  theory	
  construc(on	
  with	
  
“superpoten(al”	
  and	
  “Kahler	
  poten(al”.	
  
	
  
No	
  superpoten(al	
  term	
  can	
  give	
  rise	
  to	
  |H|2|S|2	
  interac(on	
  at	
  all	
  under	
  our	
  
considera(ons.	
  (the	
  “mu	
  term”	
  with	
  a	
  singlet	
  has	
  this,	
  but	
  there	
  are	
  solu(ons…)	
  
	
  
Kahler	
  poten(al	
  terms	
  can	
  have	
  this	
  interac(on,	
  but	
  they	
  are	
  suppressed	
  by	
  
(mweak/Mpl)2	
  =	
  10-­‐32.	
  In	
  other	
  words,	
  lagrangian	
  can	
  have	
  λ|H|2|S|2,	
  but	
  λ ~	
  10-­‐32.	
  
	
  
	
  
	
  

((ny	
  and	
  safe	
  coefficient)	
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�L = m2
bareH

†H (1)

�L =

Z
d4✓X†X

�̂†
i �̂i

M4
P l

Ĥu · Ĥd ⇠ F †F

M4
P l

�†
i�iHu ·Hd

⇠
✓
Mweak

MP l

◆2

�†
i�iHu ·Hd (2)

1
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More discussion on SUSY: ���
Minimal Supersymmetric Standard Model	



Martin, hep-ph/9709356	



	


If supersymmetry masses heavy (greater than all the	


SM masses), 4 Higgses {H+,H-,A,H} form a heavy, decoupled doublet, 
and h remains a light field, which behaves almost just as the Standard 
Model Higgs boson.	


	


Supersymmetry predicts mass of h field to be less than 	


About 135 GeV.  I.e., compatible with the 126 GeV discovery.	





Thoughts	
  on	
  Implica(ons	
  for	
  SUSY	
  
First,	
  I	
  am	
  slightly	
  more	
  encouraged	
  about	
  Supersymmetry	
  than	
  I	
  was	
  a	
  
few	
  years	
  ago….	
  	
  
	
  
Why?	
  	
  
	
  
Although	
  supersymmetry	
  par(cles	
  have	
  not	
  been	
  directly	
  observed,	
  its	
  
predic(on	
  that	
  a	
  Standard	
  Model-­‐like	
  Higgs	
  boson	
  with	
  mass	
  
	
  
	
  	
  	
  	
  	
  	
  mH	
  <	
  135	
  GeV	
  	
  	
  (a	
  priori,	
  mH	
  in	
  SM	
  could	
  have	
  been	
  up	
  to	
  ~1000	
  GeV)	
  	
  
	
  
is	
  sa(sfied	
  (mH	
  =	
  125	
  GeV).	
  
	
  
In	
  a	
  rela(ve	
  sense	
  it	
  seems	
  “be|er”	
  than	
  other	
  ideas	
  now	
  (including	
  
compositeness,	
  strongly	
  coupled,	
  Extra	
  dimensions,	
  etc.).	
  
	
  
Judgment	
  on	
  absolute	
  terms	
  is	
  of	
  course	
  less	
  clear.	
  	
  



It	
  is	
  useful	
  to	
  consider	
  how	
  susy	
  might	
  manifest	
  itself	
  if	
  it	
  is	
  
indeed	
  behind	
  the	
  125	
  GeV	
  Higgs	
  mass.	
  
	
  
Many	
  ideas	
  abound.	
  I	
  will	
  tell	
  you	
  about	
  one	
  of	
  my	
  favorites.	
  
	
  
But	
  first,	
  let	
  me	
  remind	
  you	
  about	
  the	
  light	
  Higgs	
  boson	
  mass	
  in	
  
Supersymmetry,	
  since	
  that’s	
  really	
  where	
  all	
  the	
  stress	
  is.	
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Let	
  us	
  explore	
  how	
  susy	
  might	
  be	
  compa(ble	
  with	
  
what	
  we	
  know	
  now	
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Understanding Lightest Higgs Mass Computation	



Higgs Self- 
coupling	



SUSY	


SM	



Mt	

 MSUSY	

 Q [energy scale]	



hsm	



hsm	
  

hsm	
  

hsm	
  

t	


t	



t	


t	

 = yt	
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Naturalness	


Naturalness is strained if MSUSY becomes too large.	


	


From the EW scalar potential of supersymmetry, 
the minimization conditions yield	



This is of the generic form of one large number 
subtracting another and getting a small number:	



=	
  weak	
  scale	
  
	
  	
  	
  (102	
  GeV)	
  

=	
  supersymmetry	
  
	
  	
  	
  scale	
  (>	
  103	
  GeV?)	
  



Papucci,	
  Ruderman,	
  Weiler,	
  `12	
  

Two	
  generic	
  approaches	
  to	
  SUSY	
  with	
  right	
  Higgs	
  mass	
  

Large	
  stop	
  mixing	
  
Xt	
  may	
  be	
  required	
  

Large	
  stop	
  mixing	
  
not	
  required	
  

H̃

t̃L
b̃L

t̃R

g̃

natural SUSY decoupled SUSY

W̃

B̃
L̃i, ẽi

b̃R

Q̃1,2, ũ1,2, d̃1,2

FIG. 1: Natural electroweak symmetry breaking constrains the superpartners on the left to be

light. Meanwhile, the superpartners on the right can be heavy, M � 1 TeV, without spoiling

naturalness. In this paper, we focus on determining how the LHC data constrains the masses of

the superpartners on the left.

the main points, necessary for the discussions of the following sections. In doing so, we will

try to keep the discussion as general as possible, without committing to the specific Higgs

potential of the MSSM. We do specialize the discussion to 4D theories because some aspects

of fine tuning can be modified in higher dimensional setups.

In a natural theory of EWSB the various contributions to the quadratic terms of the Higgs

potential should be comparable in size and of the order of the electroweak scale v ⇠ 246 GeV.

The relevant terms are actually those determining the curvature of the potential in the

direction of the Higgs vacuum expectation value. Therefore the discussion of naturalness

7

rating the bound by a factor of (log (⇤/ TeV))1/2 and leading to a bound of roughly 1.4 TeV

with the above parameters.

For completeness, we give also the upper bounds on the other gauginos:

(M1, M2) <⇠ (3 TeV, 900 GeV)

 
log (⇤/ TeV)

3

!�1/2 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

. (9)

The bino is clearly much less constrained, while the wino is as constrained as the gluino, but

only for low-scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is generically in the 5� 10 TeV

range.

In the MSSM, the upper bound on the stop mass from the requirement of natural EWSB is

in tension with the lower bound on the Higgs boson mass, set by the LEP-2 experiments. The

physical Higgs boson mass is controlled by the quartic coupling and the relevant radiative

corrections are [51, 52]

�m2
h =

3GFp
2⇡2

m4
t

 

log

 
m2

t̃

m2
t

!

+
X2

t

m2
t̃

 

1 � X2
t

12m2
t̃

!!

(10)

with mt̃ the average stop mass and Xt = At � µ cot �, where µ is the supersymmetric Higgs

mass parameter. Since at tree level mh  mZ , requiring mh
>⇠ 114 GeV translates into a

lower bound on the average stop mass of about 1.2 TeV for Xt ⌧ mt̃ and about 250 GeV for

Xt =
p

6mt̃, where the stop contribution to the Higgs mass is maximized.

Before the start of the LHC this was the strongest, though indirect, lower bound on the

stop masses and the main source of fine-tuning for the MSSM. However, this lower bound

on the stop masses does not necessarily apply to generalizations of the MSSM. In fact, as in,

e.g., the NMSSM [33], an extended Higgs sector can easily lead to new contributions to the

Higgs quartic coupling, raising the Higgs mass above the LEP limit without the necessity of

having very heavy stops [34].

On the other hand, Eq. 5 holds generically, and one can address the question of the

naturalness of the electroweak scale in light of direct sparticle searches, independently of the

searches for the Higgs boson(s)5.

Let us now summarize the minimal requirements for a natural SUSY spectrum:

5 An extended structure of the Higgs sector will also modify the spectrum of the neutralinos and charginos,

and change their relative branching ratios into gauge bosons vs. Higgses. These e↵ects can modify, in

10
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass
for m

˜t1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark
mixing and do not yield a 124 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken
tan � = 20. The shaded regions highlight the di↵erence between the Suspect and FeynHiggs
results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 . � . .7, near the

boundary of perturbativity at the GUT scale.

2

Hall,	
  Pinner,	
  Ruderman,	
  `12	
  

1 Introduction

The ATLAS and CMS Collaborations have recently presented the first evidence for a Higgs boson

with a mass of 124–126 GeV [1, 2]. The �� channel yields excesses at the 2–3 � level for ATLAS

and CMS, insu�cient for a clear discovery. Yet the concordance between the ATLAS and CMS

excesses increases the likelihood that this is indeed the Higgs boson, and motivates us to study

the implications for natural electroweak breaking in the context of weak-scale supersymmetry.

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter

than about 135 GeV, depending on top squark parameters (for a review with original references,

see [3]), and heavier than 114 GeV, the LEP bound on the Standard Model Higgs [4]. A Higgs

mass of 125 GeV naively seems perfect, lying midway between the experimental lower bound and

the theoretical upper limit. The key motivation for weak-scale supersymmetry is the naturalness

problem of the weak scale and therefore we take the degree of fine-tuning [5, 6, 7, 8, 9] as a

crucial tool in guiding us to the most likely implementation of a 125 GeV Higgs. In this regard

we find that increasing the Higgs mass from its present bound to 125 GeV has highly significant

consequences. In the limit of decoupling one Higgs doublet the light Higgs mass is given by

m2

h = M2

Z cos2 2� + �2t (1)

where �2t arises from loops of heavy top quarks and top squarks and tan � is the ratio of elec-

troweak vacuum expectation values. At large tan �, we require �t ⇡ 85 GeV which means that

a very substantial loop contribution, nearly as large as the tree-level mass, is required to raise

the Higgs mass to 125 GeV.

The Higgs mass calculated at two loops in the MSSM is shown in Figure 1 as a function of

the lightest top squark mass for two values of the top squark mixing parameter Xt. The red/blue

contours are computed using the Suspect [10] and FeynHiggs [11] packages, which have di↵ering

renormalization prescriptions and the spread between them, highlighted by the shading, may

be taken as a rough measure of the current uncertainty in the calculation. For a given Higgs

mass, such as 125 GeV, large top squark mixing leads to lower and more natural top squark

masses, although the mixing itself contributes to the fine-tuning, as we will discuss. In fact,

stop mixing is required to raise the Higgs mass to 125 GeV without multi-TeV stops. Even at

maximal mixing, we must have
p
mQ3mu3 & 600 GeV (which, for degenerate soft masses, results

in stop masses heavier than have been directly probed by existing LHC searches [12, 13]) and,

as we will discuss in the next section, this implies that fine-tuning of at least 1% is required in

the MSSM, even for the extreme case of an ultra-low messenger scale of 10 TeV. Hence we seek

an alternative, more natural setting for a 125 GeV Higgs.

In the next-to-minimal model (NMSSM, for a review with references, see [14]) the supersym-

metric Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to

1



2 4 6 8 1090

100

110

120

130

140

Tan b

m
h
@Ge

V
D

NMSSM Higgs Mass
l = 0.6, 0.7

mté = 1200, 500 GeV
Xt=0mh = 124-126 GeV

Figure 2: The Higgs mass in the NMSSM as a function of tan �. The solid lines show the tree-
level result of equation 2 while the shaded bands bounded by dashed lines result from adding the
�2v2 sin2 2� contribution of equation 2 to the two-loop Suspect/FeynHiggs MSSM result, with
degenerate stop soft masses and no stop mixing. The top contribution �t is su�cient to raise
the Higgs mass to 125 GeV for � = 0.7 for a top squark mass of 500 GeV; but as � is decreased
to 0.6 a larger value of the top squark mass is needed.

In the “�-SUSY” theory [15], � is increased so that the interaction becomes non-perturbative

below unified scales; but � should not exceed about 2, otherwise the non-perturbative physics

occurs below 10 TeV and is likely to destroy the successful understanding of precision electroweak

data in the perturbative theory. The non-perturbativity of � notwithstanding, gauge coupling

unification can be preserved in certain UV completions of �-SUSY, such as the Fat Higgs [16].

The �-SUSY theory is highly motivated by an improvement in fine-tuning over the MSSM by

roughly a factor of 2�2/g2 ⇠ 4�2, where g is the SU(2) gauge coupling. Equivalently, for the

MSSM and �-SUSY to have comparable levels of fine-tuning, the superpartner spectrum can be

heavier in �-SUSY by about a factor 2�. The origin of this improvement, a large value of � in

the potential, is correlated with the mass of the Higgs, which is naively raised from gv/
p
2 to

�v. However, this now appears to be excluded by current limits [17], with � > 1 giving a Higgs

boson much heavier than 125 GeV (for other theories that raise the Higgs mass above that of

the MSSM see [18, 19, 20]).

Most studies of �-SUSY [15, 21] have decoupled the CP even singlet scalar s by making its

soft mass parameter, m2

S, large. This was often done purely for simplicity to avoid the compli-
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass
for m

˜t1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark
mixing and do not yield a 124 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken
tan � = 20. The shaded regions highlight the di↵erence between the Suspect and FeynHiggs
results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 . � . .7, near the

boundary of perturbativity at the GUT scale.

2

NMSSM	
  can	
  raise	
  Higgs	
  mass	
  at	
  tree	
  level	
  

ΔW=	
  λ S	
  Hu	
  Hd	
  

COMMENT:	
  



Stops	
  are	
  
not	
  so	
  easy	
  
to	
  find	
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Arbitrary heavy SUSY?	



If allowed to strain naturalness, we should	


not conclude that SUSY is at some arbitrarily large	


scale.	


	


We wish to retain good things about SUSY:	



• Gauge Coupling unification	


• Light Higgs boson mass prediction (severely constrains)	


• Cold Dark Matter	
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Gauge Coupling 
Unification	



Martin, 97	



Unification success sensitive to -inos, 
but not scalars.	



Generic quantum 
correction	
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CDM	
  Limits	
  and	
  SUSY	
  Mass	
  

Leads	
  to	
  upper	
  bound	
  constraint	
  on	
  
lightest	
  susy	
  mass	
  (neutralino),	
  but	
  others	
  
can	
  be	
  much	
  heavier	
  (squarks	
  and	
  
sleptons).	
  

Experiment tells us	



0.09 <ΩCDMh
2 < 0.13

E.g.,	
  Wino	
  or	
  Higgsino	
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Heavier but bounded SUSY Advantages	


Stretching Naturalness …	


	


Eliminates bad things: 	


1.  FCNC	


2.  Proton decay strains	


3.  CP Violation	


4.  Too light Higgs mass	



Preserves good things:	


•  SUSY	


•  Light Higgs prediction	


•  Gauge Coupling Unification	


•  Dark Matter	



Accomplished by large	


scalar susy masses,	


but light fermion susy	


masses (gauginos,  higgsinos)	



Good theory for this? Yes.	


The -ino masses charged	


under symmetries (R and PQ)	


whereas scalars are not.	


	


[See, Split SUSY literature.]	





Higgs	
  Boson	
  Mass	
  Implica(on	
  

Giudice,	
  Strumia,	
  ‘11	
  

There	
  is	
  no	
  trouble	
  for	
  
split	
  supersymmetry	
  to	
  
accommodate	
  a	
  125	
  
GeV	
  Higgs	
  boson	
  mass.	
  
	
  
Also,	
  note	
  that	
  data	
  is	
  
not	
  compa(ble	
  with	
  
SUSY	
  at	
  arbitrarily	
  high	
  
mass.	
  (related	
  to	
  SM	
  
triviality	
  bound.)	
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Collider Implications of Heavy Flavor Supersymmetry	



Example order of 
the spectrum:	



• Scalars are out of reach	


• Binos are not produced	


• Higgs mass of 125 GeV can be accommodated	


• Wino and gluino production give colliders hope	



W+,W-,W0 winos or Higgsino --  LSP	



Bino – not produced!	



Gluinos – best hope	



Very heavy squarks/sleptons – flavour masses	



In
cr

ea
sin

g 
m

as
s	





Gluino	
  limits	
  (mgluino	
  ~	
  3m1/2)	
  similar	
  to	
  the	
  m0	
  >>	
  m1/2	
  limit.	
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Gluino Production and Decays	



Main decay is three-body through off-shell squark	



*	



(Toharia, JW for more	


details on gluino decays)	


	


S. Jung, JDW, 2014: gluino 
production at 100 TeV collidr	



Pythia output	
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High multiplicity tops+MET events	



Simplest event type: 4 top quarks 	


plus missing energy. Can the missing	


energy be measured?	



6 tops + 2 b’s + 2 pions + MET	



Combinatoric/experimental	


Challenge.	
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Preference for 3rd generation	



*	
  

The lighter the squark	


the higher the BR to	


its corresponding quark	



(ai

There is a generic	


preference for decays	


into 3rd generation	


quarks.	
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FIG. 5: 5� discovery reaches (left panel) and 1.96� CL exclusion limits (right panel) of the Wino-
NLSP and Higgsino-LSP model from the 3` (red solid), OSDL (blue dashed) and SSDL (green
dot-dashed) searches.

In Table V, we decompose the multi-lepton signal rates into each diboson channel con-

tribution for a benchmark with a 1 TeV Wino NLSP and a massless Higgsino LSP. As men-

tioned, the 3`, OSDL and SSDL channels get dominant contributions from the WZ, W+W�

and W±W± diboson channels, respectively. In spite of the fact that BR(NNLSP ! NLSPh) ⇠
0.25, the Wh channel contributions are subdominant in all final states because the Higgs’s

leptonic branching ratio, h ! WW ⇤(ZZ⇤) ! `⌫`⌫, is small. Their contribution to the

discovery reach is subdominant.

The corresponding reach is presented in Fig. 5. We do not specify our choice of additional

parameters (t� and the sign of gaugino and Higgsino masses), since the branching ratios of

the NLSP are model independent in this Higgsino LSP case. As expected, the 3` signature

can probe the highest NLSP mass while the SSDL signature can be useful in the region with

a smaller mass di↵erence between the NLSP and the LSP.

It is important to note that a 100 TeV collider with 3000/fb data will be able to exclude

Higgsino dark matter (mLSP ⇠ 1 TeV) for Winos lighter than about 3.2 TeV and not too

close in mass to the Higgsino. Achieving the significance needed for discovery of a 1 TeV

Higgsino, however, is expected to be rather di�cult (see left panel of Fig. 5). Ref. [16] shows

that monojet and disappearing charged track searches at a 100 TeV collider also can have

di�culties in probing 1 TeV Higgsino dark matter. In addition, Higgsino dark matter is a

very challenging scenario to discover from the astrophysical side, since current astrophysical

photon line/continuum searches lack sensitivity to 1 TeV Higgsinos as well [15].

Gori,	
  Jung,	
  Wang,	
  JW,	
  `15	
  

Mgluino/Mwino	
  ~	
  8	
  in	
  AMSB-­‐like	
  scenarios.	
  
	
  
Gluino	
  discovery/limits	
  of	
  ~	
  20	
  TeV	
  possible	
  at	
  100	
  TeV	
  pp	
  collider	
  –	
  	
  
This	
  would	
  be	
  nearly	
  defini(ve	
  for	
  the	
  scenario.	
  

Electroweakinos	
  at	
  future	
  Hadron	
  Colliders	
  



Conclusions	
  
Naturalness	
  concerns	
  are	
  correlated	
  with	
  what	
  else	
  
you	
  think	
  has	
  in	
  its	
  storehouse.	
  	
  
	
  
Extra	
  scalars	
  with	
  heavy	
  masses	
  are	
  par(cularly	
  lethal	
  
to	
  stability	
  of	
  the	
  electroweak	
  theory.	
  
	
  
Several	
  ideas	
  solve	
  this	
  problem	
  by	
  principles.	
  
	
  
SUSY	
  is	
  a	
  key	
  and	
  elegant	
  example.	
  Current	
  limits	
  not	
  
nearly	
  significant	
  enough	
  to	
  draw	
  strong	
  conclusions.	
  
	
  
All	
  principled	
  ideas	
  will	
  con(nue	
  to	
  be	
  strongly	
  
constrained	
  or	
  discovered	
  by	
  new	
  experiment.	
  	
  


