
Alterna(ve	  theories	  of	  
Electroweak	  Symmetry	  Breaking	  

James	  Wells	  
	  

CTEQ	  July	  2015	  



The	  Standard	  Model	  likely	  suffers	  from	  a	  
Naturalness	  Problem	  (mH	  <<	  Mpl	  –	  see	  next	  
lecture)	  
	  
We	  need	  to	  invoke	  addi(onal	  principles,	  and	  
perhaps	  addi(onal	  par(cles	  and	  forces	  to	  render	  
theory	  Natural.	  
	  
This	  lecture	  discusses	  some	  main	  ideas	  for	  that	  
and	  their	  status,	  as	  well	  as	  the	  status	  of	  
Naturalness	  itself.	  



Higgs	  boson	  unstable	  to	  QM	  

A	  quantum	  loop	  is	  quadra(cally	  divergent.	  	  Higgs	  mass,	  
connected	  to	  Higgs	  vev,	  is	  unstable	  to	  the	  highest	  mass	  
scales	  in	  the	  theory.	  

Confusing:	  MPl	  is	  1016	  (mes	  more	  massive	  than	  weak	  scale.	  	  
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1 Introduction

The discovery of the Higgs boson (Aad 2012, Chatrchyan 2012) and nothing
else exotic so far (Soni 2013) has put to rest questions of the existence of the
Higgs boson, and rejuvenated questions about its viability without additional
dynamics beyond the Standard Model. The Higgs boson is special compared
to other elementary particles in that its quantum corrections are quadratically
sensitive to high scales1. This leads to what many perceive to be a naturalness
problem for the Higgs boson.

To be more precise, if we compute in quantum field theory the self-energy
of the Higgs boson field, we find that the Higgs mass is

m2
H = m2

bare +
y2t

16⇡2
⇤2 + �O(m2

weak) (1)

where mH is the Higgs boson mass with measured value 125GeV, mbare is the
Higgs boson bare mass parameter of the unrenormalized lagrangian, yt is the
top quark Yukawa coupling with value close to 1, ⇤ is the cuto↵ value of mo-
mentum in the top quark loop of the Higgs boson self energy, and �O(m2

weak)
are all other quantum corrections, where mweak is meant to designate the
weak scale2. Eq. 1 is explicitly highlighting the contributions to the Higgs
boson mass from the top quark loop, but there are many more contributions.

The naturalness argument suggests that if the SM is a valid theory up to
a very high scale, say ⇤ ⇠ MPl ⇠ 1018 GeV, then m2

bare has to be a very
large and extraordinarily fine-tuned number to cancel the very large contribu-
tion y2t⇤

2/16⇡2, thereby reproducing the small Higgs boson mass of 125GeV.
There is no equivalently disquieting equation in particle physics seemingly re-
quiring such dramatic fine-tuning of quantum corrections. Only the cosmolog-
ical constant has perhaps more mystery of such large discrepancies compared
to expectations.

1 For historical overview of the how understanding developed over time of the quantum
corrections of scalars and the Higgs boson see Giudice (2008).

2 When precision of speech is requested we can define mweak = 100GeV. This scale
is chosen parametrically to be close to the numerical values of the W and Z boson masses
mW = 80GeV and mZ = 91GeV, the top quark mass mt = 175GeV, the Higgs boson mass
mH = 125GeV and the Higgs boson vacuum expectation value v = 246GeV, normalized to
be the value around which the dynamical Higgs field is expanded in the lagrangian.

�L = m2
bareH

†H (1)

1

Schema(cally:	  
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Cures	  of	  the	  Naturalness	  Problem,	  and	  the	  
Resul(ng	  Higgs	  boson	  Entourage	  

1.  Disallow	  all	  scalars	  in	  the	  theory	  (Technicolor).	  

2.  Symmetry	  cancels	  quadra(c	  divergences	  (supersymmetry)	  

3.  Disallow	  higher	  mass	  scales	  (extra	  dimensions).	  
	  	  	  	  	  	  	  

Implica(on:	  “New	  Physics”	  needs	  to	  be	  found	  at	  LHC.	  
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Statics and Dynamics of Higgs Mass 

Principle: SUSY, Xdim,  
Little Higgs, Compositeness, etc. 

Top squarks, radion, 
T-odd top partners, etc. Gluinos, KK Gravitons, etc. 

SUSY: + 
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But	  nothing	  else	  has	  been	  found….	  
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Losing	  the	  Naturalness	  Religion	  

Star(ng	  to	  hear	  many	  more	  comments	  like:	  
	  
“Quadra(c	  divergence	  Naturalness	  problem	  is	  just	  
philosophical	  –	  not	  really	  a	  data-‐driven	  concern.”	  
	  
“Dimensional	  regulariza(on	  has	  no	  quadra(c	  divergence	  
Naturalness	  problem,	  so	  maybe	  it	  doesn’t	  exist”	  

m2
W

✓
1

4� n
� �E + ln 4⇡ + 1� ln

m2
W

µ2

◆
+ · · · (1)

1

W	  H	   H	   à	  

(Note,	  there	  is	  no	  Λ2	  cutoff	  funny	  business	  –	  only	  1/(4-‐n))	  

2 James D. Wells
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are all other quantum corrections, where mweak is meant to designate the
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boson mass from the top quark loop, but there are many more contributions.
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bare has to be a very
large and extraordinarily fine-tuned number to cancel the very large contribu-
tion y2t⇤

2/16⇡2, thereby reproducing the small Higgs boson mass of 125GeV.
There is no equivalently disquieting equation in particle physics seemingly re-
quiring such dramatic fine-tuning of quantum corrections. Only the cosmolog-
ical constant has perhaps more mystery of such large discrepancies compared
to expectations.

1 For historical overview of the how understanding developed over time of the quantum
corrections of scalars and the Higgs boson see Giudice (2008).

2 When precision of speech is requested we can define mweak = 100GeV. This scale
is chosen parametrically to be close to the numerical values of the W and Z boson masses
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Cf.	  
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Gravity	  and	  Naturalness	  

Common	  worry:	  loop	  momentum	  cut	  off	  by	  gravity	  scale	  
	  
Λ  =	  Mpl	  =	  (GN)-‐1/2	  	  ~	  	  1018	  GeV	  which	  is	  much	  higher	  than	  	  
Mweak	  =	  MH	  =	  102	  GeV.	  
	  
However:	  
-‐  Gravity	  is	  remote	  
-‐  Gravity	  is	  not	  exactly	  like	  our	  normal	  gauge	  theories	  
-‐  Gravity	  is	  mysterious	  –	  especially	  quantum	  gravity	  
	  
Cri$cism:	  We	  do	  not	  know	  enough	  about	  gravity	  to	  use	  it	  to	  cri(cize	  
the	  Higgs	  boson’s	  naturalness.	  Throw	  out	  gravity	  considera(ons.	  

2 James D. Wells
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New	  Charged	  States	  

Surely	  the	  par(cles	  we	  know	  of	  are	  not	  everything.	  For	  
example,	  nothing	  prevents	  us	  from	  having	  a	  large	  number	  of	  
“vectorlike	  states”	  at	  high	  mass	  (mass	  not	  given	  by	  Higgs	  
boson).	  

F

H

F

H

Figure 1.2: Two-loop corrections to the Higgs squared mass parameter involving a heavy fermion F
that couples only indirectly to the Standard Model Higgs through gauge interactions.

largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from ⟨H⟩, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

S ln(ΛUV/mS) + . . .
]
. (1.3)

If one rejects the possibility of a physical interpretation of ΛUV and uses dimensional regularization
on the loop integral instead of a momentum cutoff, then there will be no Λ2

UV piece. However, even
then the term proportional to m2

S cannot be eliminated without the physically unjustifiable tuning of
a counter-term specifically for that purpose. So m2

H is sensitive to the masses of the heaviest particles
that H couples to; if mS is very large, its effects on the Standard Model do not decouple, but instead
make it difficult to understand why m2

H is so small.
This problem arises even if there is no direct coupling between the Standard Model Higgs boson

and the unknown heavy particles. For example, suppose there exists a heavy fermion F that, unlike
the quarks and leptons of the Standard Model, has vector-like quantum numbers and therefore gets a
large mass mF without coupling to the Higgs field. [In other words, an arbitrarily large mass term of
the form mFFF is not forbidden by any symmetry, including weak isospin SU(2)L.] In that case, no
diagram like Figure 1.1a exists for F . Nevertheless there will be a correction to m2

H as long as F shares
some gauge interactions with the Standard Model Higgs field; these may be the familiar electroweak
interactions, or some unknown gauge forces that are broken at a very high energy scale inaccessible to
experiment. In either case, the two-loop Feynman diagrams in Figure 1.2 yield a correction

∆m2
H = CHTF

(
g2

16π2

)2 [
aΛ2

UV + 24m2
F ln(ΛUV/mF ) + . . .

]
, (1.4)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

4

A	  vectorlike	  fermion	  feeds	  into	  the	  Higgs	  mass	  at	  two	  loops	  
through	  gauge	  interac(ons.	   10	  
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4

We	  see	  that	  the	  Higgs	  mass	  is	  quadra(cally	  sensi(ve	  to	  the	  mass	  of	  
the	  “vectorlike	  fermion”.	  This	  is	  a	  serious	  concern.	  
	  
However:	  
-‐  It	  is	  rather	  narrow	  to	  get	  worked	  up	  about	  SM	  charged	  par(cles	  
-‐  Perhaps	  we	  know	  all	  the	  par(cles	  charged	  under	  the	  SM	  

Cri$cism:	  It	  is	  plausibly	  unfair	  to	  cri(cize	  the	  Higgs	  by	  invoking	  
specula(ve	  new	  par(cles	  that	  just	  happen	  to	  be	  charged	  under	  the	  
SM.	  
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Where	  we	  are	  at:	  
	  
Naturalness	  for	  a	  stand-‐alone	  Higgs	  boson	  has	  been	  a	  concern.	  
	  
However,	  perhaps	  one	  shouldn’t	  invoke	  gravity	  in	  the	  argument.	  
	  
	  è	  consider	  the	  possibility	  that	  gravity	  induces	  no	  Naturalness	  
problems.	  
	  
And,	  perhaps	  one	  shouldn’t	  invoke	  new	  states	  charged	  under	  the	  
SM	  in	  the	  argument.	  
	  
è Assume	  that	  extra	  SM	  charged	  states	  do	  not	  exist.	  
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What	  does	  that	  leave	  us	  with:	  
	  
A	  ques(on.	  What	  about	  the	  addi(on	  of	  many	  extra	  states	  
not	  charged	  under	  the	  SM?	  Is	  there	  a	  naturalness	  concern?	  
	  
The	  answer	  is	  mostly	  no	  (some	  subtle(es	  at	  play),	  but	  one	  
generic	  and	  serious	  concern	  remains:	  	  
	  
the	  prolifera(on	  of	  scalar	  bosons	  like	  the	  Higgs	  boson.	  
	  
This	  can	  be	  called	  the	  “Higgs	  boson	  prolifera(on	  instability	  
problem”.	  
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Sensi(vity	  to	  higher	  physical	  scales	  persists	  

All	  it	  takes	  is	  for	  any	  massive	  par(cle	  to	  interact	  with	  the	  Higgs	  
and	  there	  is	  a	  real	  physical	  quantum	  correc(on	  to	  contend	  
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It	  is	  inconceivable	  to	  me	  that	  there	  is	  nothing	  else	  between	  
“here”	  (102	  GeV)	  and	  the	  Planck	  scale	  (1018	  GeV).	  And	  if	  there	  
is	  another	  scalar	  (even	  if	  exo(cally	  charged!)	  there	  is	  no	  
simple	  symmetry	  to	  forbid	  it	  from	  coupling	  to	  the	  Higgs	  
boson.	   14	  
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to coupling it with the SM Higgs boson H at the renormalizable level. The
resulting scalar potential is

V = �µ2
H |H|2 � µ2

�|�|2 + ⌘|H|2|�|2 + �H |H|4 + ��|�|4. (2)

Assuming hHi = v and h�i = ⇠, the minimization conditions for this potential
are

�µ2
H +

⌘

2
⇠2 + �Hv2 = 0

�µ2
� +

⌘

2
v2 + ��⇠

2 = 0 (3)

These two equations must be satisfied to be at the stable minimum of the
potential.

If we assume all dimensionless couplings are O(1) and µ2
� ⇠ ⇠2 � v2,

we have a serious problem with eq. 3. There is no reason to discount the
prospect of even many condensing scalars with vacuum expectation values as
high as the Planck scale, 1018 GeV, which is sixteen orders of magnitude higher
than the weak scale mweak, but even just this one extra field is destabilizing.
Somehow the large µ2

H�⌘⇠2/2 first two terms in the first minimization equation
above must cancel each other to a large fine-tuned degree in order to match
in magnitude the much smaller �v2 term so that the minimization condition
is satisfied. There are only two solutions to this problem. One, we accept a
serious fine-tuning of the parameters such that this cancelation occurs. Or,
assume that for some reason the mixing ⌘ between the Higgs and any other
condensing scalar is small so that every term of that first equation is of the
same order O(m2

H). The mixing has to be at least as small as ⌘ ⇠ v2/⇠2.
There are strong arguments against both solutions to this proliferation

problem. And as alluded to above, the problem gets much worse as the num-
ber of condensing scalars increases. The first solution assumes an accidental
fine-tuned cancellation among terms that is hard to imagine in even just one
equation. However, if we had n scalars then there would be n such minimiza-
tion equations, all requiring similarly spectacular fine-tuned cancellations. The
small mixing solution is less than desirable also, because if there are n such
scalars then we have to assume that there is at least the same small mixing for
every one of them. This is no longer accidental but systematic, and so must
involve a principle. This principle is unknown from the point of view of the
SM and thus is not satisfactory unless “new physics” is invoked.

We should remark that even non-condensing scalars when coupled to the
Higgs boson, as in eq. 2, will contribute through one-loop finite quantum e↵ects
to the mass of the Higgs boson as illustrated, for example, in Martin (1997).
If they coupling to the Higgs boson at O(1) strength and have mass greater
than a few TeV, the Higgs mass scale is destabilized in that case as well.

5 Genericness of proliferation

Another response to the proliferation problem is to assume that there simply
is no proliferation of Higgs bosons in nature, and so no proliferation instability
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Another	  example	  :	  scalar	  poten(al	  for	  the	  SM	  Higgs	  boson	  H	  and	  the	  
condensing	  exo(c	  boson	  Φ.	  

The	  Minimiza(on	  condi(ons	  from	  dV/dH	  =	  0	  and	  dV/dΦ =	  0	  yield.	  

where	  
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-‐(10,000.787	  GeV)2	  +	  (10,000	  GeV)2	  +	  0.26*(246	  GeV)2	  =	  0	  
Or,	  
-‐	  100,015,734	  +	  100,000,000	  +	  15,734	  =	  0	   15	  

(~10	  TeV	  exo(c	  masses)	  



The	  extraordinary	  finetuning	  to	  make	  these	  condi(ons	  work	  out	  
cons(tutes	  a	  naturalness	  problem.	  
	  
The	  addi(on	  of	  more	  scalars	  makes	  the	  problem	  even	  worse.	  
	  
This	  is	  the	  prolifera(on	  problem,	  and	  it	  only	  goes	  away	  if	  you	  
believe	  	  
	  
1)	  there	  are	  no	  other	  scalars	  in	  nature	  (“unlikely”),	  or	  	  
2)	  there	  is	  a	  principle	  that	  generically	  keeps	  |H|2|Φ|2	  type	  of	  
terms	  in	  check	  (new	  physics!!)	  
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Solu(ons	  to	  the	  Prolifera(on	  Problem	  

Not	  surprisingly,	  they	  are	  similar	  to	  the	  solu(ons	  of	  the	  general	  
Naturalness	  problem.	  
	  
1)  No	  fundamental	  scalars	  in	  the	  spectrum	  (technicolor/

composite	  Higgs)	  

2)  Extra	  dimensions:	  this	  is	  actually	  not	  as	  pleasant	  since	  a	  slew	  
of	  scalars	  at	  a	  few	  TeV	  can	  be	  very	  destabilizing	  

3)  Supersymmetry:	  this	  theory	  elegantly	  solves	  the	  problem.	  	  
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Composite	  Higgs	  Theories	  
First,	  a	  few	  words	  on	  composite	  Higgs	  theories.	  
	  	  
Higgs	  boson	  as	  pNGB	  of	  GàH	  breaking	  at	  scale	  f.	  
	  
Resonances	  at	  scale	  f:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  where	  	  
	  
Higgs	  poten(al	  generated	  
	  
where,	  
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This	  is	  the	  challenge	  with	  composite	  theories:	  
	  
Although	  v	  ~	  f	  is	  the	  naïve	  expecta(on,	  we	  need	  f	  >>	  v.	  
	  
Why?	  FCNC	  issues.	  

crucially depends on the mechanism employed to generate the SM Yukawas (see Sec. 4).

6.2.1 4-Fermi operators

It has been long known that a simple mechanism to generate the interactions in Eq. (4.1)

gives rise also to unsuppressed SM flavor violating 4-Fermi interactions

cijkl

⇤2
F

qiqj q̄kq̄l (6.8)

which generically violate the stringent flavor constraints: for instance from the Kaon sys-

tem, ⇤F > 103�5 TeV, while allowing for a su�ciently large top mass one would need ⇤F =

O(10) TeV. As explained in Sec. 4.1, this tension can be relaxed if the dimension of the

operator O in Eq. (4.1) is su�ciently close to one, as long as the dimension of O2 does not

decrease below four hence reintroducing the hierarchy problem.

It is worth mentioning that other alternatives might be viable, which rely on the flavor

dynamics inducing additional suppression of the operators in Eq. (6.8), either via the Yukawa

couplings, cijkl ⇠ yij
u,d ykl

u,d, in which case the bounds on ⇤F can be relaxed close to the scale

required to reproduce the top mass, or e↵ectively imposing MFV, which could be realized if

the couplings of the standard model fermions to the strong dynamics arise from the exchange

of (supersymmetric) heavy scalars, such as in bosonic technicolor [111]. In the former case

new physics is to be expected in flavor transitions, while in the latter supersymmetric states

remnant of the flavor generation should be observable.

6.2.2 Anarchic partial compositeness

As discussed in Sec. 4.2, the RS-GIM mechanism of partial compositeness significantly re-

duces the contributions to dangerous flavor transitions. However, it has been shown that the

suppression is not quite enough as to provide a fully realistic theory of flavor. Even though

�F = 2 4-Fermi operators

f i
qf

†j
q fk

q f l†
q

g2
⇢

m2
⇢

q̄iqj q̄kql (6.9)

are e↵ectively suppressed by four powers of the fermion masses m/v or CKM entries VCKM ,

measurements of CP violation in the Kaon system, ✏K , put stringent bounds on the LR

operators in Eq. (6.9), of the form m⇢ & 10 g⇢

Yd
TeV [56, 60, 81, 112, 113], as well on LL op-

erators. Although less significant, qualitatively similar bounds on LL operators arise from

CP violation in the B system, m⇢ & 1 g⇢

Yu
TeV. Given the expectation m⇢ ⇠ g⇢f , these type

of constraints bound the combination Yd,uf . In explicit constructions of the pGB Higgs, the
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	  f	  greater	  than	  ~	  10	  TeV	  probably	  needed	  	  è	  

Bellazzini,	  Csaki,	  Serra,	  `14	  	  

m⇢ ⇠ g⇢f 1 <⇠ g⇢ <⇠ 4⇡

V (H) = �µ2|H|2 + �|H|4

µ2 ⇠ g2SM
16⇡2

g2⇢f
2 � ⇠ g2SM

16⇡2
g2⇢

hHi = v =

r
µ2

�
⇠ f

v2

f 2
<⇠ 10�3

1



Significant	  interes(ng	  model	  building	  in	  composite	  Higgs	  	  
theories.	  
	  
The	  theories	  are	  s(ll	  viable.	  
	  
Tuning	  requirements	  to	  achieve	  v2	  <<	  f2	  are	  analogous	  to	  
susy’s	  v2	  <<	  msusy2	  (if	  indeed	  that	  is	  required).	  
	  
Compositeness	  affects	  Higgs	  couplings	  to	  vector	  bosons	  and	  
fermions	  with	  shius	  of	  order	  v2/f2,	  which	  can	  be	  O(few	  %).	  
	  



Many	  alterna(ve	  EWSB	  ideas	  allow	  or	  even	  
require	  more	  Higgs	  bosons.	  
	  
1)	  Either	  extra	  singlets	  under	  the	  SM	  
symmetries.	  
	  
2)	  Or,	  extra	  scalars	  charged	  under	  the	  SM	  –	  in	  
par(cular	  extra	  doublets.	  
	  
Supersymmetry	  example	  of	  this	  2nd	  type.	  



First:	  How	  SUSY	  Solves	  the	  	  
Higgs/scalar	  Prolifera(on	  Problem	  
Supersymmetry	  is	  symmetry	  between	  bosons	  (even	  spin	  par(cles,	  such	  as	  W,	  Z,	  H)	  
and	  fermions	  (half-‐integer	  spin	  par(cles,	  such	  as	  electron,	  muon	  and	  top	  quark).	  
	  
Supersymmetry	  invariance	  manifest	  when	  theory	  construc(on	  with	  
“superpoten(al”	  and	  “Kahler	  poten(al”.	  
	  
No	  superpoten(al	  term	  can	  give	  rise	  to	  |H|2|S|2	  interac(on	  at	  all	  under	  our	  
considera(ons.	  (the	  “mu	  term”	  with	  a	  singlet	  has	  this,	  but	  there	  are	  solu(ons…)	  
	  
Kahler	  poten(al	  terms	  can	  have	  this	  interac(on,	  but	  they	  are	  suppressed	  by	  
(mweak/Mpl)2	  =	  10-‐32.	  In	  other	  words,	  lagrangian	  can	  have	  λ|H|2|S|2,	  but	  λ ~	  10-‐32.	  
	  
	  
	  

((ny	  and	  safe	  coefficient)	  
22	  

�L = m2
bareH

†H (1)

�L =

Z
d4✓X†X

�̂†
i �̂i

M4
P l
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More discussion on SUSY: ���
Minimal Supersymmetric Standard Model	


Martin, hep-ph/9709356	


	

If supersymmetry masses heavy (greater than all the	

SM masses), 4 Higgses {H+,H-,A,H} form a heavy, decoupled doublet, 
and h remains a light field, which behaves almost just as the Standard 
Model Higgs boson.	

	

Supersymmetry predicts mass of h field to be less than 	

About 135 GeV.  I.e., compatible with the 126 GeV discovery.	




Thoughts	  on	  Implica(ons	  for	  SUSY	  
First,	  I	  am	  slightly	  more	  encouraged	  about	  Supersymmetry	  than	  I	  was	  a	  
few	  years	  ago….	  	  
	  
Why?	  	  
	  
Although	  supersymmetry	  par(cles	  have	  not	  been	  directly	  observed,	  its	  
predic(on	  that	  a	  Standard	  Model-‐like	  Higgs	  boson	  with	  mass	  
	  
	  	  	  	  	  	  mH	  <	  135	  GeV	  	  	  (a	  priori,	  mH	  in	  SM	  could	  have	  been	  up	  to	  ~1000	  GeV)	  	  
	  
is	  sa(sfied	  (mH	  =	  125	  GeV).	  
	  
In	  a	  rela(ve	  sense	  it	  seems	  “be|er”	  than	  other	  ideas	  now	  (including	  
compositeness,	  strongly	  coupled,	  Extra	  dimensions,	  etc.).	  
	  
Judgment	  on	  absolute	  terms	  is	  of	  course	  less	  clear.	  	  



It	  is	  useful	  to	  consider	  how	  susy	  might	  manifest	  itself	  if	  it	  is	  
indeed	  behind	  the	  125	  GeV	  Higgs	  mass.	  
	  
Many	  ideas	  abound.	  I	  will	  tell	  you	  about	  one	  of	  my	  favorites.	  
	  
But	  first,	  let	  me	  remind	  you	  about	  the	  light	  Higgs	  boson	  mass	  in	  
Supersymmetry,	  since	  that’s	  really	  where	  all	  the	  stress	  is.	  

25	  

Let	  us	  explore	  how	  susy	  might	  be	  compa(ble	  with	  
what	  we	  know	  now	  
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Understanding Lightest Higgs Mass Computation	


Higgs Self- 
coupling	


SUSY	

SM	


Mt	
 MSUSY	
 Q [energy scale]	


hsm	


hsm	  

hsm	  

hsm	  

t	

t	


t	

t	
 = yt	
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Naturalness	

Naturalness is strained if MSUSY becomes too large.	

	

From the EW scalar potential of supersymmetry, 
the minimization conditions yield	


This is of the generic form of one large number 
subtracting another and getting a small number:	


=	  weak	  scale	  
	  	  	  (102	  GeV)	  

=	  supersymmetry	  
	  	  	  scale	  (>	  103	  GeV?)	  



Papucci,	  Ruderman,	  Weiler,	  `12	  

Two	  generic	  approaches	  to	  SUSY	  with	  right	  Higgs	  mass	  

Large	  stop	  mixing	  
Xt	  may	  be	  required	  

Large	  stop	  mixing	  
not	  required	  

H̃

t̃L
b̃L

t̃R

g̃

natural SUSY decoupled SUSY

W̃

B̃
L̃i, ẽi

b̃R

Q̃1,2, ũ1,2, d̃1,2

FIG. 1: Natural electroweak symmetry breaking constrains the superpartners on the left to be

light. Meanwhile, the superpartners on the right can be heavy, M � 1 TeV, without spoiling

naturalness. In this paper, we focus on determining how the LHC data constrains the masses of

the superpartners on the left.

the main points, necessary for the discussions of the following sections. In doing so, we will

try to keep the discussion as general as possible, without committing to the specific Higgs

potential of the MSSM. We do specialize the discussion to 4D theories because some aspects

of fine tuning can be modified in higher dimensional setups.

In a natural theory of EWSB the various contributions to the quadratic terms of the Higgs

potential should be comparable in size and of the order of the electroweak scale v ⇠ 246 GeV.

The relevant terms are actually those determining the curvature of the potential in the

direction of the Higgs vacuum expectation value. Therefore the discussion of naturalness

7

rating the bound by a factor of (log (⇤/ TeV))1/2 and leading to a bound of roughly 1.4 TeV

with the above parameters.

For completeness, we give also the upper bounds on the other gauginos:

(M1, M2) <⇠ (3 TeV, 900 GeV)

 
log (⇤/ TeV)

3

!�1/2 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

. (9)

The bino is clearly much less constrained, while the wino is as constrained as the gluino, but

only for low-scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is generically in the 5� 10 TeV

range.

In the MSSM, the upper bound on the stop mass from the requirement of natural EWSB is

in tension with the lower bound on the Higgs boson mass, set by the LEP-2 experiments. The

physical Higgs boson mass is controlled by the quartic coupling and the relevant radiative

corrections are [51, 52]

�m2
h =

3GFp
2⇡2

m4
t

 

log

 
m2

t̃

m2
t

!

+
X2

t

m2
t̃

 

1 � X2
t

12m2
t̃

!!

(10)

with mt̃ the average stop mass and Xt = At � µ cot �, where µ is the supersymmetric Higgs

mass parameter. Since at tree level mh  mZ , requiring mh
>⇠ 114 GeV translates into a

lower bound on the average stop mass of about 1.2 TeV for Xt ⌧ mt̃ and about 250 GeV for

Xt =
p

6mt̃, where the stop contribution to the Higgs mass is maximized.

Before the start of the LHC this was the strongest, though indirect, lower bound on the

stop masses and the main source of fine-tuning for the MSSM. However, this lower bound

on the stop masses does not necessarily apply to generalizations of the MSSM. In fact, as in,

e.g., the NMSSM [33], an extended Higgs sector can easily lead to new contributions to the

Higgs quartic coupling, raising the Higgs mass above the LEP limit without the necessity of

having very heavy stops [34].

On the other hand, Eq. 5 holds generically, and one can address the question of the

naturalness of the electroweak scale in light of direct sparticle searches, independently of the

searches for the Higgs boson(s)5.

Let us now summarize the minimal requirements for a natural SUSY spectrum:

5 An extended structure of the Higgs sector will also modify the spectrum of the neutralinos and charginos,

and change their relative branching ratios into gauge bosons vs. Higgses. These e↵ects can modify, in

10
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass
for m

˜t1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark
mixing and do not yield a 124 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken
tan � = 20. The shaded regions highlight the di↵erence between the Suspect and FeynHiggs
results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 . � . .7, near the

boundary of perturbativity at the GUT scale.

2

Hall,	  Pinner,	  Ruderman,	  `12	  

1 Introduction

The ATLAS and CMS Collaborations have recently presented the first evidence for a Higgs boson

with a mass of 124–126 GeV [1, 2]. The �� channel yields excesses at the 2–3 � level for ATLAS

and CMS, insu�cient for a clear discovery. Yet the concordance between the ATLAS and CMS

excesses increases the likelihood that this is indeed the Higgs boson, and motivates us to study

the implications for natural electroweak breaking in the context of weak-scale supersymmetry.

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter

than about 135 GeV, depending on top squark parameters (for a review with original references,

see [3]), and heavier than 114 GeV, the LEP bound on the Standard Model Higgs [4]. A Higgs

mass of 125 GeV naively seems perfect, lying midway between the experimental lower bound and

the theoretical upper limit. The key motivation for weak-scale supersymmetry is the naturalness

problem of the weak scale and therefore we take the degree of fine-tuning [5, 6, 7, 8, 9] as a

crucial tool in guiding us to the most likely implementation of a 125 GeV Higgs. In this regard

we find that increasing the Higgs mass from its present bound to 125 GeV has highly significant

consequences. In the limit of decoupling one Higgs doublet the light Higgs mass is given by

m2

h = M2

Z cos2 2� + �2t (1)

where �2t arises from loops of heavy top quarks and top squarks and tan � is the ratio of elec-

troweak vacuum expectation values. At large tan �, we require �t ⇡ 85 GeV which means that

a very substantial loop contribution, nearly as large as the tree-level mass, is required to raise

the Higgs mass to 125 GeV.

The Higgs mass calculated at two loops in the MSSM is shown in Figure 1 as a function of

the lightest top squark mass for two values of the top squark mixing parameter Xt. The red/blue

contours are computed using the Suspect [10] and FeynHiggs [11] packages, which have di↵ering

renormalization prescriptions and the spread between them, highlighted by the shading, may

be taken as a rough measure of the current uncertainty in the calculation. For a given Higgs

mass, such as 125 GeV, large top squark mixing leads to lower and more natural top squark

masses, although the mixing itself contributes to the fine-tuning, as we will discuss. In fact,

stop mixing is required to raise the Higgs mass to 125 GeV without multi-TeV stops. Even at

maximal mixing, we must have
p
mQ3mu3 & 600 GeV (which, for degenerate soft masses, results

in stop masses heavier than have been directly probed by existing LHC searches [12, 13]) and,

as we will discuss in the next section, this implies that fine-tuning of at least 1% is required in

the MSSM, even for the extreme case of an ultra-low messenger scale of 10 TeV. Hence we seek

an alternative, more natural setting for a 125 GeV Higgs.

In the next-to-minimal model (NMSSM, for a review with references, see [14]) the supersym-

metric Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to

1



2 4 6 8 1090

100

110

120

130

140

Tan b

m
h
@Ge

V
D

NMSSM Higgs Mass
l = 0.6, 0.7

mté = 1200, 500 GeV
Xt=0mh = 124-126 GeV

Figure 2: The Higgs mass in the NMSSM as a function of tan �. The solid lines show the tree-
level result of equation 2 while the shaded bands bounded by dashed lines result from adding the
�2v2 sin2 2� contribution of equation 2 to the two-loop Suspect/FeynHiggs MSSM result, with
degenerate stop soft masses and no stop mixing. The top contribution �t is su�cient to raise
the Higgs mass to 125 GeV for � = 0.7 for a top squark mass of 500 GeV; but as � is decreased
to 0.6 a larger value of the top squark mass is needed.

In the “�-SUSY” theory [15], � is increased so that the interaction becomes non-perturbative

below unified scales; but � should not exceed about 2, otherwise the non-perturbative physics

occurs below 10 TeV and is likely to destroy the successful understanding of precision electroweak

data in the perturbative theory. The non-perturbativity of � notwithstanding, gauge coupling

unification can be preserved in certain UV completions of �-SUSY, such as the Fat Higgs [16].

The �-SUSY theory is highly motivated by an improvement in fine-tuning over the MSSM by

roughly a factor of 2�2/g2 ⇠ 4�2, where g is the SU(2) gauge coupling. Equivalently, for the

MSSM and �-SUSY to have comparable levels of fine-tuning, the superpartner spectrum can be

heavier in �-SUSY by about a factor 2�. The origin of this improvement, a large value of � in

the potential, is correlated with the mass of the Higgs, which is naively raised from gv/
p
2 to

�v. However, this now appears to be excluded by current limits [17], with � > 1 giving a Higgs

boson much heavier than 125 GeV (for other theories that raise the Higgs mass above that of

the MSSM see [18, 19, 20]).

Most studies of �-SUSY [15, 21] have decoupled the CP even singlet scalar s by making its

soft mass parameter, m2

S, large. This was often done purely for simplicity to avoid the compli-
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass
for m

˜t1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark
mixing and do not yield a 124 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken
tan � = 20. The shaded regions highlight the di↵erence between the Suspect and FeynHiggs
results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 . � . .7, near the

boundary of perturbativity at the GUT scale.

2

NMSSM	  can	  raise	  Higgs	  mass	  at	  tree	  level	  

ΔW=	  λ S	  Hu	  Hd	  

COMMENT:	  



Stops	  are	  
not	  so	  easy	  
to	  find	  
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Arbitrary heavy SUSY?	


If allowed to strain naturalness, we should	

not conclude that SUSY is at some arbitrarily large	

scale.	

	

We wish to retain good things about SUSY:	


• Gauge Coupling unification	

• Light Higgs boson mass prediction (severely constrains)	

• Cold Dark Matter	
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Gauge Coupling 
Unification	


Martin, 97	


Unification success sensitive to -inos, 
but not scalars.	


Generic quantum 
correction	
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CDM	  Limits	  and	  SUSY	  Mass	  

Leads	  to	  upper	  bound	  constraint	  on	  
lightest	  susy	  mass	  (neutralino),	  but	  others	  
can	  be	  much	  heavier	  (squarks	  and	  
sleptons).	  

Experiment tells us	


0.09 <ΩCDMh
2 < 0.13

E.g.,	  Wino	  or	  Higgsino	  
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Heavier but bounded SUSY Advantages	

Stretching Naturalness …	

	

Eliminates bad things: 	

1.  FCNC	

2.  Proton decay strains	

3.  CP Violation	

4.  Too light Higgs mass	


Preserves good things:	

•  SUSY	

•  Light Higgs prediction	

•  Gauge Coupling Unification	

•  Dark Matter	


Accomplished by large	

scalar susy masses,	

but light fermion susy	

masses (gauginos,  higgsinos)	


Good theory for this? Yes.	

The -ino masses charged	

under symmetries (R and PQ)	

whereas scalars are not.	

	

[See, Split SUSY literature.]	




Higgs	  Boson	  Mass	  Implica(on	  

Giudice,	  Strumia,	  ‘11	  

There	  is	  no	  trouble	  for	  
split	  supersymmetry	  to	  
accommodate	  a	  125	  
GeV	  Higgs	  boson	  mass.	  
	  
Also,	  note	  that	  data	  is	  
not	  compa(ble	  with	  
SUSY	  at	  arbitrarily	  high	  
mass.	  (related	  to	  SM	  
triviality	  bound.)	  

36	  
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Collider Implications of Heavy Flavor Supersymmetry	


Example order of 
the spectrum:	


• Scalars are out of reach	

• Binos are not produced	

• Higgs mass of 125 GeV can be accommodated	

• Wino and gluino production give colliders hope	


W+,W-,W0 winos or Higgsino --  LSP	


Bino – not produced!	


Gluinos – best hope	


Very heavy squarks/sleptons – flavour masses	


In
cr

ea
sin

g 
m

as
s	




Gluino	  limits	  (mgluino	  ~	  3m1/2)	  similar	  to	  the	  m0	  >>	  m1/2	  limit.	  
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Gluino Production and Decays	


Main decay is three-body through off-shell squark	


*	


(Toharia, JW for more	

details on gluino decays)	

	

S. Jung, JDW, 2014: gluino 
production at 100 TeV collidr	


Pythia output	
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High multiplicity tops+MET events	


Simplest event type: 4 top quarks 	

plus missing energy. Can the missing	

energy be measured?	


6 tops + 2 b’s + 2 pions + MET	


Combinatoric/experimental	

Challenge.	
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Preference for 3rd generation	


*	  

The lighter the squark	

the higher the BR to	

its corresponding quark	


(ai

There is a generic	

preference for decays	

into 3rd generation	

quarks.	
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FIG. 5: 5� discovery reaches (left panel) and 1.96� CL exclusion limits (right panel) of the Wino-
NLSP and Higgsino-LSP model from the 3` (red solid), OSDL (blue dashed) and SSDL (green
dot-dashed) searches.

In Table V, we decompose the multi-lepton signal rates into each diboson channel con-

tribution for a benchmark with a 1 TeV Wino NLSP and a massless Higgsino LSP. As men-

tioned, the 3`, OSDL and SSDL channels get dominant contributions from the WZ, W+W�

and W±W± diboson channels, respectively. In spite of the fact that BR(NNLSP ! NLSPh) ⇠
0.25, the Wh channel contributions are subdominant in all final states because the Higgs’s

leptonic branching ratio, h ! WW ⇤(ZZ⇤) ! `⌫`⌫, is small. Their contribution to the

discovery reach is subdominant.

The corresponding reach is presented in Fig. 5. We do not specify our choice of additional

parameters (t� and the sign of gaugino and Higgsino masses), since the branching ratios of

the NLSP are model independent in this Higgsino LSP case. As expected, the 3` signature

can probe the highest NLSP mass while the SSDL signature can be useful in the region with

a smaller mass di↵erence between the NLSP and the LSP.

It is important to note that a 100 TeV collider with 3000/fb data will be able to exclude

Higgsino dark matter (mLSP ⇠ 1 TeV) for Winos lighter than about 3.2 TeV and not too

close in mass to the Higgsino. Achieving the significance needed for discovery of a 1 TeV

Higgsino, however, is expected to be rather di�cult (see left panel of Fig. 5). Ref. [16] shows

that monojet and disappearing charged track searches at a 100 TeV collider also can have

di�culties in probing 1 TeV Higgsino dark matter. In addition, Higgsino dark matter is a

very challenging scenario to discover from the astrophysical side, since current astrophysical

photon line/continuum searches lack sensitivity to 1 TeV Higgsinos as well [15].

Gori,	  Jung,	  Wang,	  JW,	  `15	  

Mgluino/Mwino	  ~	  8	  in	  AMSB-‐like	  scenarios.	  
	  
Gluino	  discovery/limits	  of	  ~	  20	  TeV	  possible	  at	  100	  TeV	  pp	  collider	  –	  	  
This	  would	  be	  nearly	  defini(ve	  for	  the	  scenario.	  

Electroweakinos	  at	  future	  Hadron	  Colliders	  



Conclusions	  
Naturalness	  concerns	  are	  correlated	  with	  what	  else	  
you	  think	  has	  in	  its	  storehouse.	  	  
	  
Extra	  scalars	  with	  heavy	  masses	  are	  par(cularly	  lethal	  
to	  stability	  of	  the	  electroweak	  theory.	  
	  
Several	  ideas	  solve	  this	  problem	  by	  principles.	  
	  
SUSY	  is	  a	  key	  and	  elegant	  example.	  Current	  limits	  not	  
nearly	  significant	  enough	  to	  draw	  strong	  conclusions.	  
	  
All	  principled	  ideas	  will	  con(nue	  to	  be	  strongly	  
constrained	  or	  discovered	  by	  new	  experiment.	  	  


