Alternative theories of Electroweak Symmetry Breaking

James Wells

CTEQ July 2015

The Standard Model likely suffers from a Naturalness Problem (m_H << M_{pl} – see next lecture)

We need to invoke additional principles, and perhaps additional particles and forces to render theory Natural.

This lecture discusses some main ideas for that and their status, as well as the status of Naturalness itself.

Higgs boson unstable to QM

A quantum loop is quadratically divergent. Higgs mass, connected to Higgs vev, is unstable to the highest mass scales in the theory.

Schematically:

Confusing: M_{Pl} is 10¹⁶ times more massive than weak scale.

Cures of the Naturalness Problem, and the Resulting Higgs boson Entourage

- 1. Disallow all scalars in the theory (Technicolor).
- 2. Symmetry cancels quadratic divergences (supersymmetry)
- 3. Disallow higher mass scales (extra dimensions).

Implication: "New Physics" needs to be found at LHC.

Statics and Dynamics of Higgs Mass

But nothing else has been found....

	ATLAS Exolics Searches - 95% CE Lower Limits (Status: May 2013)	
Large ED (ADD) : monoiet + E-	$M = 4.37 \text{ TeV} M_{\odot} (\delta=2)$	
Large ED (ADD) : monophoton + E_{T} and	$L_{24} = 6 \text{ (b}^3 / \text{TeV} [1209.4525]$ 1.93 TeV $M_{\odot} (\delta = 2)$	
2 Large ED (ADD) : diphoton & dilepton. m.	Le4.7 (b ² , 7 TeV 12211.1150) 4.18 TeV M _α (HLZ δ=3, NLO) ATLA	4S
UED : diphoton + $E_{T, raise}$	I 44 8 th ⁴ 7 TeV 1209 07531 140 TeV Compact scale R ⁻¹ Prelimin	hary
S ¹ /Z ED : dilepton m	4.71 TeV (1209.2535) 4.71 TeV (1209.2535)	
BS1 : dilepton, m	$(1200 \text{ m}^3 \text{ a tev (ATLAS, CONE-2013,0171})$ 2.47 Tev Graviton mass $(k/M_{cr} = 0.1)$	
RS1 : WW resonance. m	$(44.7 \text{ th}^3 \text{ 7 TeV})$ (208.2880) 1.23 TeV Graviton mass $(k/M_{\odot} = 0.1)$	
Bulk RS : ZZ resonance. m.	$L_{eff}(z) = \frac{1}{2} \int dz $	fb ⁻¹
$RS \mathfrak{a} \rightarrow t\overline{\mathfrak{l}} (BR=0.925) : t\overline{\mathfrak{l}} \rightarrow l+iets. m$		
ADD BH $(M_{\pi}, /M_{\pi}=3)$: SS dimuon, N,	$L = 1.3 \text{ tb}^3 / T = V (1111.0080)$ (s = 7, 8 (s = 7	TeV
ADD BH $(M_{Tu}/M_{p}=3)$: leptons + jets, Σp	$L=10$ m ⁻¹ 7 TeV (1204.4646) 1.5 TeV M_{\odot} (δ =6)	
Quantum black hole : dijet, F (m_{μ})	L=4.7 fb ⁻¹ , 7 TeV [1210.1718] 4.11 TeV $M_{\odot}(\delta=6)$	
qqqq contact interaction : $\chi(m_{\perp})$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718] 7.6 TeV A	
ggll Cl : ee & μμ, m	L=5.0 fb ⁻² , 7 TeV (1211.1150) 13.9 TeV Δ (constructive int.)	
uutt CI : SS dilepton + jets + E	L=14.3 (b ⁻¹ , 8 TeV (ATLAS-CONF-2013-051) 3.3 TeV A (C=1)	
Z' (SSM) : m _{estru}	L=20 fb ⁺ , 8 TeV [ATLAS-CONF-2013-017] 2.86 TeV Z' mass	
Z' (SSM) : m	L=4.7 tb ⁻¹ , 7 TeV 11210.66041 1.4 TeV Z' mass	
Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+iets. m$	L=14.3 (b ⁻¹ , 8 TeV IATLAS-CONF-2013-052) 1.8 TeV	
$>$ W' (SSM) : m_{Total}	L=4.7 (b ⁻¹ , 7 TeV 1/209,4446) 2.55 TeV W' mass	
W' $(\rightarrow tq, q_{-}=1): m_{-}$	L=4.7 fb ⁻¹ , 7 TeV (1209.6593) 430 GeV W' mass	
W'_{P} (\rightarrow tb, LRSM) : m''_{P}	L=14.3 (b ⁻¹ , 8 TeV IATLAS-CONF-2013-050) 1.84 TeV W' Mass	
Scalar LQ pair (β =1) ; kin, vars, in eeii, evii	L=1.0 fb ⁻¹ , 7 TeV [1112.4828] 660 GeV 1 th gen. LQ mass	
Scalar LQ pair (β =1) : kin, vars, in uuii, uvii	L=1.0 fb ⁻¹ , 7 TeV [1203.3172] 685 GeV 2 nd gen, LQ mass	
Scalar LQ pair (8=1) ; kin, vars, in ττί, τνί	L=4.7 fb ⁻¹ , 7 TeV (1303.0526) 534 GeV 3 rd gen LQ mass	
4 th generation : t't'→ WbWb	L=4,7 fb ⁻¹ , 7 TeV [1210.5468] 656 GeV ¹ mass	
\geq 4th generation : b'b' \rightarrow SS dilepton + jets + E	L=14.3 fb ⁻¹ , 8 TeV IATLAS-CONF-2013-0511 720 GeV b' mass	
Vector-like guark : TT→ Ht+X	L=14.3 (b ⁻¹ , 8 TeV IATLAS-CONF-2013-018) 790 GeV T mass (isospin doublet)	
Vector-like guark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137] 1.12 TeV VLQ mass (charge -1/3, coupling $\kappa_{-0} = v/m_{-}$)	
Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV (1112.3580) 2.46 TeV q* mass	
Excited guarks : dijet resonance, m	L=13.0 (b ⁻¹ , 8 TeV (ATLAS-CONF-2012-148) 3.84 TeV g ⁺ mass	
Excited b guark : W-t resonance, m	L=4.7 (b ⁻¹ , 7 TeV (1301.1583) 870 GeV b* mass (left-handed coupling)	
Excited leptons : I-γ resonance, m	L=13.0 fb ² , 8 TeV IATLAS-CONF-2012-1461 2.2 TeV $ * mass (\Lambda = m(*))$	
Techni-hadrons (LSTC) ; dilepton, m	$L=50$ fb ⁻¹ , 7 TeV (1209.2535) 850 GeV ρ_{1}/ρ_{-} mass $(m(\rho_{1}/\rho_{-}) - m(\pi_{-}) = M)$	
Techni-hadrons (LSTC) : WZ resonance (Ivil), m	L=13.0 (b ² , 8 TeV IATLAS-CONF-2013-0151 920 GeV p mass $(m(\alpha) = m(\pi_{-}) + m_{W_{-}} m(\alpha) = 1.1 m(\alpha))$	
Major, neutr. (LRSM, no mixing) : 2-lep + jets	1.5 TeV N mass (m(W) = 2 TeV)	
Heavy lepton N [±] (type III seesaw) : Z-I resonance, m_{π}	L=5.8 fb ⁻¹ , 8 TeV IATLAS-CONF-20 指行的 N ⁺ mass (IV I = 0.055, IV I = 0.063, IV I = 0)	
$H^{\pm}(DY \text{ prod.}, BR(H^{\pm} \rightarrow II)=1)$: SS ee (µµ), m	L=4.7 fb ² , 7 TeV (1210.5070) 409 GeV H ⁴⁴ mass (limit at 398 GeV for µµ)	
Color octet scalar : dijet resonance. m	L=4.8 fb ⁻¹ ,7 TeV (1210.1718) 1.86 TeV Scalar resonance mass	
Multi-charged particles (DY prod.) ; highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV (1301.5272) 490 GeV mass (lg] = 4e)	
Magnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁻¹ , 7 TeV (1207.641) 862 GeV mass	
insgrists manopalos (or prodifit ingriff tonizing tradits		
	10-1 1 10	10
	10 1 10	10

ATLAS Exotion Sectoberst 05% CL Lower Limite (Status: May 2012)

Mass scale [TeV]

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS F	reliminary
---------	------------

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	⁻¹] Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q} \widetilde{q}, \overline{q} \rightarrow q \widetilde{\chi}_{1}^{0} \\ \overline{g} \widetilde{g}, \widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0} \\ \overline{g} \widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_{1}^{1} \rightarrow q q \mathcal{W}^{\pm} \widetilde{\chi}_{1}^{0} \\ \overline{g} \widetilde{g}, \widetilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \widetilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino NLSP}) \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 2-4 jets 0-2 jets 	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	q . ğ q . ğ q . g q . g <td< td=""><td>$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & tan\beta < 15 \\ & tan\beta > 18 \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 20 \text{ GeV} \\ & m(\tilde{x}_1^0) > 200 \text{ GeV} \\ & m(\tilde{r}_1^0) > 200 \text{ GeV} \\ & m(\tilde{r}_1^0) > 200 \text{ GeV} \\ & m(\tilde{r}_1) > 200 \text{ GeV} \\ & m(\tilde{g}) > 10^{-4} \text{ eV} \end{split}$</td><td>ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-124 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152</td></td<>	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & tan\beta < 15 \\ & tan\beta > 18 \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 20 \text{ GeV} \\ & m(\tilde{x}_1^0) > 200 \text{ GeV} \\ & m(\tilde{r}_1^0) > 200 \text{ GeV} \\ & m(\tilde{r}_1^0) > 200 \text{ GeV} \\ & m(\tilde{r}_1) > 200 \text{ GeV} \\ & m(\tilde{g}) > 10^{-4} \text{ eV} \end{split}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-124 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
grund gen. grund med.	$ \begin{array}{c} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{1} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV ğ 1.1 TeV ğ 1.34 TeV ğ 1.34 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0})\!<\!600\text{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!350\text{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!400\text{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!300\text{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1 \cdot \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1 \cdot \tilde{b}_1 \rightarrow t \tilde{\chi}_1^1 \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{neatural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1\mathchar`-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t: 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{x}_{1}^{0}) < 90 \text{ GeV } \\ & m(\tilde{x}_{1}^{+}) = 2 \ m(\tilde{x}_{1}^{0}) \\ & m(\tilde{x}_{1}^{0}) = 55 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 55 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 0 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 150 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 150 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 150 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 160 \ \text{GeV } \\ & m(\tilde{x}_{1}^{0}) = 160 \ \text{GeV } \\ \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\nu}\nu\tilde{\ell}_{\nu}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{\nu}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3		$\begin{array}{l} m(\tilde{x}_{1}^{0}){=}0 \; GeV \\ m(\tilde{x}_{1}^{0}){=}0 \; GeV, m(\tilde{\ell}, \tilde{r}){=}0.5(m(\tilde{x}_{1}^{+}){+}m(\tilde{x}_{1}^{0})) \\ m(\tilde{x}_{1}^{0}){=}0 \; GeV, m(\tilde{\ell}, \tilde{r}){=}0.5(m(\tilde{x}_{1}^{+}){+}m(\tilde{x}_{1}^{0})) \\ em(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{r}){=}0.5(m(\tilde{x}_{1}^{+}){+}m(\tilde{x}_{1}^{0})) \\ m(\tilde{x}_{1}^{-}){=}m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}){=}0, sleptons \; decoupled \\ m(\tilde{x}_{1}^{+}){=}m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}){=}0, sleptons \; decoupled \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\epsilon$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 $(\mu) 1-2 \mu$ 2γ 1 μ , displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	\$\bar{x}_1^{+}\$ 270 GeV \$\vec{g}\$ 832 GeV \$\vec{x}_1^0\$ 475 GeV \$\vec{x}_1^0\$ 230 GeV \$\vec{q}\$ 1.0 TeV	$\begin{array}{l} m(\tilde{x}_1^+) \cdot m(\tilde{x}_1^0) {=} 160 \; MeV, \; \tau(\tilde{x}_1^+) {=} 0.2 \; ns \\ m(\tilde{x}_1^0) {=} 100 \; GeV, \; 10 \; \mus {<} \tau(\tilde{g}) {<} 1000 \; s \\ 10 {<} tan \beta {<} 50 \\ 0.4 {<} \tau(\tilde{x}_1^0) {<} 2 \; ns \\ 1.5 {<} c\tau {<} 156 \; mm, \; BR(\mu) {=} 1, \; m(\tilde{x}_1^0) {=} 108 \; GeV \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow ee\widetilde{v}_{\mu}, e\mu \widetilde{v}, \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e\tau \widetilde{v}_{\tau} \\ \widetilde{g} \rightarrow qq \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \ \widetilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c cccc} \bar{y}_{\tau} & & 1.61 \ {\rm TeV} \\ \bar{y}_{\tau} & & 1.1 \ {\rm TeV} \\ \bar{q}_{\tau} \bar{g} & & 1.2 \ {\rm TeV} \\ \bar{x}_{1}^{\pm} & & 760 \ {\rm GeV} \\ \bar{x}_{1}^{\pm} & & 350 \ {\rm GeV} \\ \bar{g} & & 880 \ {\rm GeV} \\ \end{array} $	$\begin{array}{l} \lambda_{311}'=0.10, \lambda_{132}=0.05 \\ \lambda_{311}'=0.10, \lambda_{1(2)33}=0.05 \\ \mathfrak{m}(\vec{q})=\mathfrak{m}(\vec{g}), c\tau_{LSP}<1 \mathrm{mm} \\ \mathfrak{m}(\vec{v}_1^0)>300 \mathrm{GeV}, \lambda_{122}>0 \\ \mathfrak{m}(\vec{v}_1^0)>80 \mathrm{GeV}, \lambda_{133}>0 \\ BR(t)=BR(b)=BR(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> ,μ(SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	√s = 8 TeV artial data	$\sqrt{s} = 3$ full of	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Losing the Naturalness Religion

Starting to hear many more comments like:

"Quadratic divergence Naturalness problem is just philosophical – not really a data-driven concern."

"Dimensional regularization has no quadratic divergence Naturalness problem, so maybe it doesn't exist"

$$\mathbf{Cf.} \ m_{H}^{2} = m_{\text{bare}}^{2} + \frac{y_{t}^{2}}{16\pi^{2}}\Lambda^{2} + \delta\mathcal{O}(m_{\text{weak}}^{2})$$

$$\mathbf{H} \qquad \mathbf{H} \qquad \mathbf{H}$$

(Note, there is no Λ^2 cutoff funny business – only 1/(4-n))

Gravity and Naturalness

$$m_H^2 = m_{\text{bare}}^2 + \frac{y_t^2}{16\pi^2} \Lambda^2 + \delta \mathcal{O}(m_{\text{weak}}^2)$$

Common worry: loop momentum cut off by gravity scale

 $\Lambda = M_{pl} = (G_N)^{-1/2} \sim 10^{18} \text{ GeV which is much higher than}$ $M_{weak} = M_H = 10^2 \text{ GeV.}$

However:

- Gravity is remote
- Gravity is not exactly like our normal gauge theories
- Gravity is mysterious especially quantum gravity

Criticism: We do not know enough about gravity to use it to criticize the Higgs boson's naturalness. Throw out gravity considerations.

New Charged States

Surely the particles we know of are not everything. For example, nothing prevents us from having a large number of "vectorlike states" at high mass (mass not given by Higgs boson).

A vectorlike fermion feeds into the Higgs mass at two loops through gauge interactions.

$$\Delta m_H^2 = C_H T_F \left(\frac{g^2}{16\pi^2}\right)^2 \left[a\Lambda_{\rm UV}^2 + 24m_F^2 \ln(\Lambda_{\rm UV}/m_F) + \dots\right]$$

We see that the Higgs mass is quadratically sensitive to the mass of the "vectorlike fermion". This is a serious concern.

However:

- It is rather narrow to get worked up about SM charged particles
- Perhaps we know all the particles charged under the SM

Criticism: It is plausibly unfair to criticize the Higgs by invoking speculative new particles that just happen to be charged under the SM.

Where we are at:

Naturalness for a stand-alone Higgs boson has been a concern.

However, perhaps one shouldn't invoke gravity in the argument.

consider the possibility that gravity induces no Naturalness problems.

And, perhaps one shouldn't invoke new states charged under the SM in the argument.

→ Assume that extra SM charged states do not exist.

What does that leave us with:

A question. What about the addition of many extra states not charged under the SM? Is there a naturalness concern?

The answer is mostly no (some subtleties at play), but one generic and serious concern remains:

the proliferation of scalar bosons like the Higgs boson.

This can be called the "Higgs boson proliferation instability problem".

Sensitivity to higher physical scales persists

All it takes is for any massive particle to interact with the Higgs and there is a real physical quantum correction to contend with.

$$\Delta \mathcal{L} = \lambda_{\Phi} |H|^2 |\Phi|^2$$

It is inconceivable to me that there is nothing else between "here" (10² GeV) and the Planck scale (10¹⁸ GeV). And if there is another scalar (even if exotically charged!) there is no simple symmetry to forbid it from coupling to the Higgs boson.

Finetuning of Mass Scales

Another example : scalar potential for the SM Higgs boson H and the condensing exotic boson $\Phi.$

$$V = -\mu_H^2 |H|^2 - \mu_\Phi^2 |\Phi|^2 + \eta |H|^2 |\Phi|^2 + \lambda_H |H|^4 + \lambda_\Phi |\Phi|^4$$

The Minimization conditions from dV/dH = 0 and $dV/d\Phi = 0$ yield.

$$-\mu_{H}^{2} + \frac{\eta}{2}\xi^{2} + \lambda_{H}v^{2} = 0 \qquad \text{where} \\ -\mu_{\Phi}^{2} + \frac{\eta}{2}v^{2} + \lambda_{\Phi}\xi^{2} = 0 \qquad \langle H \rangle = v \text{ and } \langle \Phi \rangle = \xi$$

If we assume all dimensionless couplings are $\mathcal{O}(1)$ and $\mu_{\Phi}^2 \sim \xi^2 \gg v^2$, we have a serious problem with eq. (~10 TeV exotic masses)

$$-\mu_{H}^{2} + \frac{\eta}{2}\xi^{2} + \lambda_{H}v^{2} = 0$$
$$-\mu_{\Phi}^{2} + \frac{\eta}{2}v^{2} + \lambda_{\Phi}\xi^{2} = 0$$

The extraordinary finetuning to make these conditions work out constitutes a naturalness problem.

The addition of more scalars makes the problem even worse.

This is the proliferation problem, and it only goes away if you believe

1) there are no other scalars in nature ("unlikely"), or 2) there is a principle that generically keeps $|H|^2|\Phi|^2$ type of terms in check (new physics!!)

Solutions to the Proliferation Problem

Not surprisingly, they are similar to the solutions of the general Naturalness problem.

- No fundamental scalars in the spectrum (technicolor/ composite Higgs)
- 2) Extra dimensions: this is actually not as pleasant since a slew of scalars at a few TeV can be very destabilizing
- 3) Supersymmetry: this theory elegantly solves the problem.

Composite Higgs Theories

First, a few words on composite Higgs theories.

Higgs boson as pNGB of $G \rightarrow H$ breaking at scale f.

Resonances at scale f: $m_{
ho} \sim g_{
ho} f$ where $1 \lesssim g_{
ho} \lesssim 4\pi$

Higgs potential generated

where,

$$V(H) = -\mu^2 |H|^2 + \lambda |H|^4$$

$$\mu^2 \sim \frac{g_{SM}^2}{16\pi^2} g_{\rho}^2 f^2 \qquad \lambda \sim \frac{g_{SM}^2}{16\pi^2} g_{\rho}^2 \qquad \clubsuit \qquad \langle H \rangle = v = \sqrt{\frac{\mu^2}{\lambda}} \sim f$$

This is the challenge with composite theories:

Although v ~ f is the naïve expectation, we need f >> v.

Why? FCNC issues.

As discussed in Sec. 4.2, the RS-GIM mechanism of partial compositeness significantly reduces the contributions to dangerous flavor transitions. However, it has been shown that the suppression is not quite enough as to provide a fully realistic theory of flavor. Even though $\Delta F = 2$ 4-Fermi operators

$$f_q^i f_q^{\dagger j} f_q^k f_q^{l\dagger} \frac{g_{\rho}^2}{m_{\rho}^2} \bar{q}^i q^j \bar{q}^k q^l \tag{6.9}$$

are effectively suppressed by four powers of the fermion masses m/v or CKM entries V_{CKM} , measurements of CP violation in the Kaon system, ϵ_K , put stringent bounds on the LR operators in Eq. (6.9), of the form $m_\rho \gtrsim 10 \frac{g_\rho}{Y_d}$ TeV [56, 60, 81, 112, 113], as well on LL operators. Although less significant, qualitatively similar bounds on LL operators arise from CP violation in the *B* system, $m_\rho \gtrsim 1 \frac{g_\rho}{Y_u}$ TeV. Given the expectation $m_\rho \sim g_\rho f$, these type of constraints bound the combination $Y_{d,u}f$. In explicit constructions of the pGB Higgs, the

Bellazzini, Csaki, Serra, `14

f greater than ~ 10 TeV probably needed $\rightarrow \frac{v^2}{f^2} \lesssim 10^{-3}$

Significant interesting model building in composite Higgs theories.

The theories are still viable.

Tuning requirements to achieve $v^2 \ll f^2$ are analogous to susy's $v^2 \ll msusy^2$ (if indeed that is required).

Compositeness affects Higgs couplings to vector bosons and fermions with shifts of order v^2/f^2 , which can be O(few %).

Many alternative EWSB ideas allow or even require more Higgs bosons.

1) Either extra singlets under the SM symmetries.

2) Or, extra scalars charged under the SM – in particular extra doublets.

Supersymmetry example of this 2nd type.

<u>First: How SUSY Solves the</u> <u>Higgs/scalar Proliferation Problem</u>

Supersymmetry is symmetry between bosons (even spin particles, such as W, Z, H) and fermions (half-integer spin particles, such as electron, muon and top quark).

Supersymmetry invariance manifest when theory construction with "superpotential" and "Kahler potential".

No superpotential term can give rise to $|H|^2|S|^2$ interaction at all under our considerations. (the "mu term" with a singlet has this, but there are solutions...)

Kahler potential terms can have this interaction, but they are suppressed by $(m_{weak}/M_{pl})^2 = 10^{-32}$. In other words, lagrangian can have $\lambda |H|^2 |S|^2$, but $\lambda \simeq 10^{-32}$.

$$\begin{split} \Delta \mathcal{L} &= \int d^4 \theta X^{\dagger} X \frac{\hat{\Phi}_i^{\dagger} \hat{\Phi}_i}{M_{Pl}^4} \hat{H}_u \cdot \hat{H}_d \sim \frac{F^{\dagger} F}{M_{Pl}^4} \Phi_i^{\dagger} \Phi_i H_u \cdot H_d \\ &\sim \left(\frac{M_{weak}}{M_{Pl}}\right)^2 \Phi_i^{\dagger} \Phi_i H_u \cdot H_d \qquad \text{(tiny and safe coefficient)} \end{split}$$

More discussion on SUSY: Minimal Supersymmetric Standard Model

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$(\ {f 3},\ {f 2},\ {1\over 6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{3},1,-rac{2}{3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3},1,rac{1}{3})$
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$	$({f 1}, {f 2}, -{1\over 2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$({f 1}, {f 2}, + {1\over 2})$
	H_d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$({f 1}, {f 2}, -{1\over 2})$

If supersymmetry masses heavy (greater than all the SM masses), 4 Higgses $\{H^+,H^-,A,H\}$ form a heavy, decoupled doublet, and h remains a light field, which behaves almost just as the Standard Model Higgs boson.

Supersymmetry predicts mass of h field to be less than About 135 GeV. I.e., compatible with the 126 GeV discovery.

Thoughts on Implications for SUSY

First, I am slightly more encouraged about Supersymmetry than I was a few years ago....

Why?

Although supersymmetry particles have not been directly observed, its prediction that a Standard Model-like Higgs boson with mass

 $m_{H} < 135 \text{ GeV}$ (a priori, m_{H} in SM could have been up to ~1000 GeV)

is satisfied ($m_H = 125 \text{ GeV}$).

In a relative sense it seems "better" than other ideas now (including compositeness, strongly coupled, Extra dimensions, etc.).

Judgment on absolute terms is of course less clear.

Let us explore how susy might be compatible with what we know now

It is useful to consider how susy might manifest itself if it is indeed behind the 125 GeV Higgs mass.

Many ideas abound. I will tell you about one of my favorites.

But first, let me remind you about the light Higgs boson mass in Supersymmetry, since that's really where all the stress is.

Understanding Lightest Higgs Mass Computation

Naturalness

Naturalness is strained if M_{SUSY} becomes too large.

From the EW scalar potential of supersymmetry, the minimization conditions yield

$$\frac{1}{2}m_Z^2 + \mu^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} \qquad (10^2 \text{ GeV})$$

$$= \text{ supersymmetry} \text{ scale (> 10^3 \text{ GeV?})}$$

This is of the generic form of one large number subtracting another and getting a small number:

$$\tilde{m}_1^2 - \tilde{m}_2^2 = m_Z^2$$

= weak scale

Two generic approaches to SUSY with right Higgs mass

Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, $m_{\tilde{t}_1}$, with red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass for $m_{\tilde{t}_1}$ in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark mixing and do not yield a 124 GeV Higgs mass for $m_{\tilde{t}_1}$ below 3 TeV. Here we have taken $\tan \beta = 20$. The shaded regions highlight the difference between the Suspect and FeynHiggs results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

Hall, Pinner, Ruderman, `12

COMMENT: <u>NMSSM can raise Higgs mass at tree level</u>

$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta_t^2$$

Figure 2: The Higgs mass in the NMSSM as a function of $\tan \beta$. The solid lines show the treelevel result of equation 2 while the shaded bands bounded by dashed lines result from adding the $\lambda^2 v^2 \sin^2 2\beta$ contribution of equation 2 to the two-loop Suspect/FeynHiggs MSSM result, with degenerate stop soft masses and no stop mixing. The top contribution δ_t is sufficient to raise the Higgs mass to 125 GeV for $\lambda = 0.7$ for a top squark mass of 500 GeV; but as λ is decreased to 0.6 a larger value of the top squark mass is needed.

Arbitrary heavy SUSY?

If allowed to strain naturalness, we should not conclude that SUSY is at some arbitrarily large scale.

We wish to retain good things about SUSY:

•Gauge Coupling unification

Light Higgs boson mass prediction (severely constrains)Cold Dark Matter

"Proximity Factor" for gauge coupling unification is defined to be the factor A needed such that Generic quantum

$$g_U = g_1(M_U) = g_2(M_U) = g_3(M_U) + A \frac{g_U^3}{16\pi^2}$$

In weak-scale MSSM $M_U \simeq 2 \times 10^{16} \text{ GeV}$ and $A \simeq 1$.

Unification success sensitive to -inos, but not scalars. correction

2

CDM Limits and SUSY Mass

Experiment tells us

$$0.09 < \Omega_{CDM} h^2 < 0.13$$

Leads to upper bound constraint on lightest susy mass (neutralino), but others can be much heavier (squarks and sleptons).

$$\Omega h^{2} = \frac{A}{\langle \sigma v \rangle} = \frac{A\tilde{m}^{2}}{\alpha}, \text{ where } \langle \sigma v \rangle = \frac{\alpha}{\tilde{m}^{2}}$$

$$\frac{A\tilde{m}^{2}}{\alpha} < 0.13 \quad \rightarrow \quad \tilde{m} < \sqrt{0.13\alpha/A} < \text{ few TeV}$$

$$_{34}$$

Heavier but bounded SUSY Advantages

Stretching Naturalness ...

Eliminates bad things:

- 1. FCNC
- 2. Proton decay strains
- 3. CP Violation
- 4. Too light Higgs mass

Preserves good things:

- SUSY
- Light Higgs prediction
- Gauge Coupling Unification
- Dark Matter

Accomplished by large scalar susy masses, but light fermion susy masses (gauginos, higgsinos)

Good theory for this? Yes. The -ino masses charged under symmetries (R and PQ) whereas scalars are not.

[See, Split SUSY literature.]

Higgs Boson Mass Implication

Split Supersymmetry

There is no trouble for split supersymmetry to accommodate a 125 GeV Higgs boson mass.

Also, note that data is not compatible with SUSY at arbitrarily high mass. (related to SM triviality bound.)

Collider Implications of Heavy Flavor Supersymmetry

Example order of the spectrum:

Increasing mass

Very heavy squarks/sleptons – flavour masses Gluinos – best hope Bino – not produced!

W⁺,W⁻,W⁰ winos or Higgsino -- LSP

- •Scalars are out of reach
- •Binos are not produced
- •Higgs mass of 125 GeV can be accommodated
- •Wino and gluino production give colliders hope

Gluino Production and Decays

Pythia output

Main decay is three-body through off-shell squark

(Toharia, JW for more details on gluino decays)

S. Jung, JDW, 2014: gluino production at 100 TeV collidr

High multiplicity tops+MET events

Simplest event type: 4 top quarks plus missing energy. Can the missing energy be measured?

Combinatoric/experimental Challenge.

6 tops + 2 b' s + 2 pions + MET

40

Preference for 3rd generation

The lighter the squark the higher the BR to its corresponding quark

$$\frac{d\tilde{m}_{q_i}^2}{d\log Q} = -\frac{32}{3}M_3^2 + a_i y_{q_i}^2 \tilde{m}_{q_i}^2 + \cdots \quad (a_i \text{ is positive})$$

There is a generic preference for decays into 3rd generation quarks.

Electroweakinos at future Hadron Colliders

FIG. 5: 5σ discovery reaches (left panel) and 1.96σ CL exclusion limits (right panel) of the Wino-NLSP and Higgsino-LSP model from the 3ℓ (red solid), OSDL (blue dashed) and SSDL (green dot-dashed) searches. Gori, Jung, Wang, JW, `15

Mgluino/Mwino ~ 8 in AMSB-like scenarios.

Gluino discovery/limits of ~ 20 TeV possible at 100 TeV pp collider – This would be nearly definitive for the scenario.

Conclusions

Naturalness concerns are correlated with what else you think has in its storehouse.

Extra scalars with heavy masses are particularly lethal to stability of the electroweak theory.

Several ideas solve this problem by principles.

SUSY is a key and elegant example. Current limits not nearly significant enough to draw strong conclusions.

All principled ideas will continue to be strongly constrained or discovered by new experiment.