Standard Model Physics at the LHC: QCD, Top, Electroweak

Outline

- 1. Tests of QCD and jet production
 - 1. Jet cross sections
 - 2. The strong coupling
 - 3. Associated jet production
- 2. Measurements of the top quark
 - 1. Top pair production
 - 2. Top quark mass
 - 3. Top properties
 - 4. Single top production
- 3. Tests of the electroweak theory
 - 1. Vector boson production
 - 2. Diboson production and TGCs
 - 3. Vector boson scattering and QGCs

tt charge asymmetry

- ISR/FSR interference, LO-NLO interference induces small SM asymmetry in production rapidity
- Global AC is +0.001±0.0068±0.0037
- CMS 8 TeV data also bound AC differentially in y(tt), PT(tt), and m(tt)
- Exotic tt interactions would modify AC vs. mass
- 1.5 TeV effective axial-vector gluon coupling excluded

tt spin correlation

- Top and anti-top spins are correlated in SM tt production
- Non-zero correlation strength
 Ahel =
 Nlike-Nunlike/
 Nlike+Nunlike

Asymmetry in events with tops aligned or antialigned wrt top dof

Ahel inferred from △ distribution in top dilepton pairs

Ahel = 0.38±0.04 consistent with SM value (0.32)

Excludes squeezed stop scenarios where top pair correlation is zero

PRL 114 (2015) 142001

W boson helicity

- W helicity in SM top decay is 70% longitudinal (F0), 30% left-handed (FL)
- In tt lepton+jets candidates, reconstruct cos θ*
- Fit angular distribution convolved with detector eff. and resolution

• Helicity consistent with the SM

 Anomalous dimension-six operators constrained

Top quark polarization

PRL 111 (2013) 232002

11111

Rare t decays

- Anomalous tqZ, tqg, and tqγ FCNC couplings sought in rare decays. Credible new physics rates at 10⁻⁴-10⁻⁵ level
- tqZ, tqγ selected as tt with one less b, one more Z/γ. Limits in 10⁻³ 10⁻⁴ range
- Single top final state kinematics can be mined for tqg interactions at 10⁻⁵ level

Events / 0.1

DATA/MC

 Next factor ten will probe the new physics rates in tqγ and tqZ

Single top production processes: t-channel

ATLAS-CONF-2014-007

Electroweak t-channel single top production identified in W+ =2 jet =1 btag events

Discrimination of signal and tt background via 14variable NN

Cross section consistent with SM. JES and signal modelling dominant unc.

Vtb > 0.78 at 95%CL

Single top production processes: tW

PRL 112 (2014) 231802

For dileptonic W decays, final state is dilepton+ =1 btag jet

Discrimination for signal and tt background with kinematic BDT, including extra "loose jets"

First observation at 6.1 of in CMS 8 TeV data. Agrees with SM at 23% level.

23.4±5.4 pb vs. SM 22 pb

Vtb > 0.78 @ 95%CL

Single top production processes: s-channel

PLB 740 (2015) 118

Smallest of the three channels tch = 4x Wt Wt = 4x sch

Final state is W+=2btag jets

Kinematic BDT discriminates tt and tchannel backgrounds (angular variables most important)

1s excess consistent with SM rate (5.0±4.3 pb vs. 5.6 pb)

<14.6 pb @95% CL

Evidence of ttV production

- Select SS 2-lepton,3lepton, and 4-lepton + (>= 1b) jets events
- SS-2-lepton ttW-like, 3lepton ttZ-like
- ATLAS:
 ttW @ 3.1σ, ttZ @3.1σ,
 ttV @ 4.9 σ

CMS:
ttW @ 1.6σ, ttZ @ 3.1σ,
ttV @ 3.7σ

ATLAS-CONF-2014-038

13

Observation of $tt\gamma$ production

- Lepton+jets tt candidates with photons > 20 GeV selected
- Fake photons subtracted via fit to track isolation

• 5 sigma excess consistent with SM

14

2. The electroweak vector bosons d С S 1. Vector bosons at the Terascale 2. The TGC menagerie 3. The dawn of vector boson scattering μ μ v_{τ} e

Drell-Yan Cross Section at LHC (7 TeV)

JHEP 12 (2013) 030

- Cross section vs. dilepton mass measured at 7 TeV, from 15-1500 GeV in mass.
- 1M events/fb/experiment ulletat 7 TeV!
- ee, $\mu\mu$ in agreement with ightarroweach other and with the Standard Model

Drell-Yan Cross Section at LHC (7 TeV)

- NNLO QCD corrections are important at low mass (mostly boosted events)
- NLO EWK corrections and photon-induced production relevant at high masses.
 Photon PDF is needed for accurate predictions.

17

Drell-Yan Cross Section at LHC (8 TeV)

EPJC 75 (2015) 147

 Cross section vs. dilepton mass now measured at 8 TeV, from 15-2000 GeV in mass. Differential double ratios (1/σΖ)(dσ/dm)8TeV / (1/σΖ)(dσ/dm)7TeV measured for the first time

Weak mixing angle at hadron colliders

<u>1503.03709</u>

- Select central dilepton pairs, and also centralforward electrons with full 7 TeV dataset
- Raw AFB = Count forward/backward abundance in CS frame
- AFB in good agreement with PYTHIA * PHOZPR NNLO K-factor (MSTWNNLO2008)
- 1.8σ lower angle than LEP+SLD average

Drell-Yan AFB (8 TeV)

CMS-PAS-SMP-14-004

• Away from the Z-pole, Z/γ^* interferences induces angular asymmetry in $\cos \theta^*$

 AFB sampled as a function of the dilepton mass (in slices of dilepton rapidity)

Prospects for W mass at the LHC

- The LHC has excellent detectors and semi-infinite statistics and thus has a good a priori prospect for a <10-MeV measurement
- Biggest three obstacles to surmount:
- PDFs: sea quarks play a much stronger role than the Tevatron. Need at least 2X better PDFs.
- Momentum scale
- Recoil model/MET

ΔM_W [MeV]		LHC	2
$\sqrt{s} [\text{TeV}]$	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	20	300	3000
PDF	10	5	3
QED rad.	4	3	2
$p_T(W)$ model	2	1	1
other systematics	10	5	3
W statistics	1	0.2	0
Total	15	8	5

arxiv:1310.6708

ATLAS-PHYS-PUB-2014-015

	MW-NLO	CT10nlo	MSTW2008CPdeutnlo	NNPDF30_nlo_as_118
W^+	+13 -12	+18 -22	+11 -10	+8 -10
W^-	+22 -22	+18 -23	+11 -10	+8 -9
W^{\pm}	+11 -11	+14 -18	+7 -7	+6 -5

W charge asymmetry

- At 8 TeV, ~5M W muon candidates produced per /fb
- Differential W charge asymmetry precisely probes u/d ratio vs. x

$$\mathcal{A}(\eta) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^+ \to \ell^+ \nu) - \frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^- \to \ell^- \bar{\nu})}{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^+ \to \ell^+ \nu) + \frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^- \to \ell^- \bar{\nu})}$$

 Recent CMS measurement can precisely extract a clean W asymmetry using ~20 million W candidates!

W charge asymmetry

- At 8 TeV, ~5M W muon candidates produced per /fb
- Differential W charge asymmetry precisely probes u/d ratio vs. x

- Asymmetry measured to 0.1% absolute per bin
- Has obvious constraining power for all PDF families

$$\mathcal{A}(\eta) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^+ \to \ell^+ \nu) - \frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^- \to \ell^- \bar{\nu})}{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^+ \to \ell^+ \nu) + \frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^- \to \ell^- \bar{\nu})}$$

2. The electroweak vector bosons d С S 1. Vector bosons at the Terascale 2. The TGC menagerie 3. The dawn of vector boson scattering μ μ $v_{ au}$ e

Effective Field Theory and Boson Interactions

- For generic new physics effects descended from some high energy scale Λ, explore operator product expansion with Wilson coefficients c_i
- Before EWSB, 5 gauge boson interaction terms respect gauge invariance (3 CP even + 2 CP odd)

- After EWSB, induces trilinear VVV', VV'H, and quartic interactions with correlated coefficients.
- At dim 6, expect WWγ, WWZ interactions with 3 CP-even parameters (g1, k, λ)
- Manifested as high mass/momentum production tails

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \frac{c_{i}^{(n)}}{\Lambda^{n}} \mathcal{O}_{i}^{(n+4)}$$

$$\begin{bmatrix} \mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W_{\rho}^{\mu}] \\ \mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \\ \mathcal{O}_{\bar{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W_{\rho}^{\mu}] \\ \mathcal{O}_{\bar{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi) \end{bmatrix}$$

$$BROKEN$$

$$\mathcal{L} = ig_{WWV} \left(g_{1}^{V}(W_{\mu\nu}^{+}W^{-\mu} - W^{+\mu}W_{\mu\nu}^{-})V^{\nu} + \kappa_{V}W_{\mu}^{+}W_{\nu}^{-}V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}}W_{\mu}^{\nu+}W_{\nu}^{-\rho}V_{\rho}^{\mu} \right)$$

$$+\tilde{\kappa}_{V}W_{\mu}^{+}W_{\nu}^{-}V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}}W_{\mu}^{\nu+}W_{\nu}^{-\rho}\tilde{V}_{\rho}^{\mu} \right)$$

$$q$$

$$q$$

$$W$$

$W\gamma$ and WZ Production (7 TeV)

WW Production (7 TeV)

Events / 20 GeV

- Thousands of candidates in dilepton channel
- Leading lepton PT shows no anomalous contribution
- Significant diboson signal in semileptonic channel
- Higher BR and low background at high PT gives superior TGC constraint

Charged aTGCs at 7 TeV: World Summary

- Best single LHC 7 TeV measurements equal LEP2 or Tevatron combinations
- Semileptonic WW gives the best information on κ and λ, leptonic WW and WZ better for g.
- LHC 8 TeV will provide 2-3X better constraints, eclipsing LEP2
- Higgs-VV' couplings also compete here!
- Probing $\Lambda \approx 200\text{-}500~\text{GeV}$ for c \approx 1

Oct 2014					
				ATLAS Limits CMS Prel. Limits D0 Limit LEP Limit	
Δκ —			+ Wγ	-0.410 - 0.460	4.6 fb⁻¹
			Wγ	-0.380 - 0.290	5.0 fb ⁻¹
			WW	-0.210 - 0.220	4.9 fb ⁻¹
			WV	-0.210 - 0.220	4.6 fb⁻¹
	 		WV	-0.110 - 0.140	5.0 fb ⁻¹
	└──── ⁰ ────┤		D0 Combination	-0.158 - 0.255	8.6 fb ⁻¹
	⊢ •−−1		LEP Combination	-0.099 - 0.066	0.7 fb ⁻¹
2	⊢		Wγ	-0.065 - 0.061	4.6 fb⁻¹
λ_{γ}	⊢		Wγ	-0.050 - 0.037	5.0 fb ⁻¹
	—		WW	-0.048 - 0.048	4.9 fb ⁻¹
			WV	-0.039 - 0.040	4.6 fb⁻¹
	⊢ −−1		WV	-0.038 - 0.030	5.0 fb⁻¹
			D0 Combination	-0.036 - 0.044	8.6 fb⁻¹
	Heri		LEP Combination	-0.059 - 0.017	0.7 fb⁻¹
-0.5	0	I		1.5	

ZZ Production

ATLAS-CONF-2013-020 CMS-PAS-SMP-12-016 arxiv:1406.0113

~300 ZZ to 4-lepton candidates observed at 8 TeV/experiment with SM rate and shapes

 ~200 ZZ to 2l2v candidates observed at 8 TeV, give best (dim 8) TGC constraint

Zγ Production (7 TeV)

γΡΤ

PRD 89 (2014) 092005 JHEP 10 (2013) 164 PRD 87 (2013) 112003

- <u>dơ(pp→ l⁺lγ)[</u>fb GeV⁻] dE₁ 10² $Z\gamma \rightarrow II\gamma$ 10 0 ATLAS $L dt = 4.6 \text{ fb}^{-1}$ 1 ls=7TeV pp → l⁺l γ 10⁻¹ Data 2011 (Inclusive) Data 2011 (Exclusive) 10⁻² Inclusive Exclusive) CFM (Exclusive CFM (Inclusive 10⁻³ <u>Data</u> Theory ф 0 2 <u>Data</u> Theory ⁰ ⊑_____15 1000 20 30 40 60 100 E_T^{γ} [GeV] CMS, L = 5.0 fb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ Events / GeV - Data $Z\gamma \rightarrow \nu \overline{\nu}\gamma + bkg$ $\Gamma GC h_{2}^{Z} = 0.003 + bkg$ $iet \rightarrow \gamma$ $Z\gamma \rightarrow MET + \gamma$ Beam-halo γ+jets, Wγ $W \rightarrow e v$ 10-1 10-2 10-3 10-4 600 200 300 400 500 700 E_{T}^{γ} (GeV)
- Thousands of \mathbf{O} dilepton-photon events at 7 TeV agree with SM
- MET-photon channel: Higher BR and low background at high PT gives superior (dim 8) **TGC** constraint

WW Production (8 TeV)

- Kinematic shapes agree with prediction,
- ~5000 emu ATLAS candidates with 20/fb!
- Systematics from jet veto acceptance, background methods
- Theory calculation being actively studied (jet vetoes, NNLO)
- ATLAS is 2σ high, CMS agrees with SM
- New TGC constraints from CMS world's best

ATLAS 71.4±1.2 (stat.)±5.0 (syst.)±2.2 (lum.) pb (2σ) 1507.03268 CMS 60.1±0.9 (stat.)±4.5 (syst.)±1.6 (lum.) pb

Diboson cross sections: World Summary

- CMS data
- No anomalies at the > 2σ level

Diboson cross sections: World Summary

ATLAS data	Multiboson Cross Section Measurements Status: March 2015				Reference	
ATLAS Udla	$\sigma^{\rm fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	$\sigma = 44.0 + 3.2 - 4.2 \text{ pb (data)} \\ 2\text{yNNLO (theory)} $	ATLAS Preliminary	4.9	JHEP 01, 086 (2013)	
	$\sigma^{\rm fid}(W\gamma \to \ell \nu \gamma)$	$\sigma = 2.77 \pm 0.03 \pm 0.36 \text{ pb (data)}$ NNLO (theory)		4.6	PRD 87, 112003 (2013) arXiv:1407 1618 [bep-ph]	
WW at 8 TeV	$-\left[n_{\mathrm{jet}}=0 ight]$	$\sigma = 1.76 \pm 0.03 \pm 0.22 \text{ pb (data)}$ NNLO (theory)	Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$	4.6	PRD 87, 112003 (2013)	
is 2.1 σ high	$\sigma^{\rm fid}(Z\gamma \to \ell\ell\gamma)$	$\sigma = 1.31 \pm 0.02 \pm 0.12 \text{ pb (data)}$ NNLO (theory)		4.6	PRD 87, 112003 (2013) arXiv:1407.1618 [hep-ph]	
13 2.10 mgn	$-[n_{jet}=0]$	$\sigma = 1.05 \pm 0.02 \pm 0.11 \text{ pb (data)}$ NNLO (theory)		4.6	PRD 87, 112003 (2013)	
	$\sigma^{\rm fid}(W\gamma\gamma \to \ell \nu \gamma \gamma)$	$\sigma = 6.1 + 1.1 - 1.0 \pm 1.2 \text{ fb} \text{ (data)} \\ \text{MCFM NLO (theory)}$	À	20.3	arXiv:1503.03243 [hep-ex]	
$W\gamma\gamma$ is high	$-[n_{jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1.0 - 0.9 \text{ fb (data)}$	A	20.3	arXiv:1503.03243 [hep-ex]	
	$\sigma^{\rm fid}(\mathbf{pp} \rightarrow \mathbf{WV} \rightarrow \ell \nu \mathbf{qq})$	$\sigma = 1.37 \pm 0.14 \pm 0.37 \text{ pb (data)}$		4.6	JHEP 01, 049 (2015)	
	$\sigma^{ m fid}({\sf W}^{\pm}{\sf W}^{\pm}{ m jj})$ EWK	$\sigma = 1.3 \pm 0.4 \pm 0.2 \text{ (b) (data)}$ PowhegBox (theory)		20.3	PRL 113, 141803 (2014)	
	$\sigma^{\text{total}}(\mathbf{pp} \rightarrow \mathbf{WW})$	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb} (data)$ $MCFM (theory)$ $\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb} (data)$ $MCFM (theory)$		4.6 20.3	PRD 87, 112001 (2013) ATLAS-CONF-2014-033	
	$-\sigma^{\text{fid}}(WW \rightarrow ee) [n_{\text{jet}}=0]$	$\sigma = 56.4 \pm 6.8 \pm 10.0 \text{ lb} \text{ (data)} \\ \text{MCFM (theory)} \bullet$		4.6	PRD 87, 112001 (2013)	
	$-\sigma^{\text{fid}}(WW \rightarrow \mu\mu) [n_{\text{jet}}=0]$	σ = 73.9 ± 5.9 ± 7.5 fb (data) MCFM (theory) ●		4.6	PRD 87, 112001 (2013)	
	$-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n_{\text{jet}}=0]$	σ = 262.3 ± 12.3 ± 23.1 fb (data) MCFM (theory)	Theory	4.6	PRD 87, 112001 (2013)	
	− σ ^{fid} (WW→eμ) [n _{jet} ≥0]	σ = 563.0 ± 28.0 + 79.0 - 85.0 fb (data) MCFM (theory)	Observed	4.6	arXiv:1407.0573 [hep-ex]	
	$\sigma^{\text{total}}(\mathbf{pp}{ ightarrow}\mathbf{WZ})$	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)}$ MCFM (theory) $\sigma = 20.3 + 0.8 - 0.7 \pm 1.4 - 1.3 \text{ pb (data)}$	stat stat+syst	4.6 13.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021	
	$-\sigma^{fid}(WZ \to \ell \nu \ell \ell)$	$\sigma = 99.2 + 3.8 - 3.0 + 6.0 - 6.2$ fb (data)		13.0	ATLAS-CONF-2013-021	
	$\sigma^{\text{total}}(pp \rightarrow ZZ)$	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)}$ $\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)}$ $\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)}$		4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020	
	$-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell)$	$\sigma = 76.0 \pm 18.0 \text{ th}^{2} \text{ (data)}$ $\sigma = 107.0 \pm 9.0 \pm 5.0 \text{ th} \text{ (data)}$	Observed	4.5 20.3	arXiv:1403.5657 [hep-ex] arXiv:1403.5657 [hep-ex]	
	$-\sigma^{\mathrm{fid}}(ZZ \to 4\ell)$	$ \sigma = 25.4 + 3.3^{-3} 3.0 + 1.6 - 1.4 \text{ fb} (data) \sigma = 20.7 + 1.3 - 1.2 + 1.0 \text{ fb} (data) \sigma = 20.7 + 1.3 - 1.2 + 1.0 \text{ fb} (data) $	▲ stat stat+syst	4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020	
	$-\sigma^{\mathrm{fid}}(ZZ^* \to 4\ell)$	$\sigma = 29.8 + 3.8 - 3.5 + 2.1 - 1.9$ fb (data) PowhegBox & gg2ZZ (theory)		4.6	JHEP 03, 128 (2013)	
	$-\sigma^{fid}(ZZ^* \to \ell\ell\nu\nu)$	$\sigma = 12.7 + 3.1 - 2.9 \pm 1.8$ (b (data) PowhegBox & gg2ZZ (the)		4.6	JHEP 03, 128 (2013)	
		0.2 0.4 0.6 0.8 1.0 1.2 1.4	1.6 1.8 2.0 2.2 2.4 2.6	-		
			observed/theory			

2. The electroweak vector bosons d С S 1. Vector bosons at the Terascale 2. The TGC menagerie 3. The dawn of vector boson scattering μ μ $v_{ au}$ e

35

Electroweak Z + 2 jet production

- VBF Z one of 3 (interfering) EWK Z + 2 jet amplitudes
- Unique laboratory for studying rapidity gaps and VBF jet dynamics
- Require dijet "VBF topology":

large dijet mass (250-1000 GeV) large dijet Δy (or rapidity gap) and other kinematic information to separate from QCD Z+ 2 jet

 CMS observed a 2.6σ signal in the 7 TeV data after a BDT selection

Electroweak Z + 2 jet production

• >5 σ evidence has been reported by both experiments at 8 TeV, first published by ATLAS. Cross sections are consistent with SM predictions.

 After reweighting QCD Z+2 jets in sidebands, jet dynamics wellmodeled in and around search regions

 $\sigma_{EWK} = 226 \pm 44 \text{ fb}$

 $\sigma_{VBFNLO} = 239 \text{ fb}$

Electroweak W + 2 jet production

Recent observation of electroweak W+2 jet production as well.
 Consistent with SM.

μ	0.45 ± 0.04 (stat.) ± 0.10 (syst.) ± 0.01 (lumi.) pb		
ejj	0.41 ± 0.04 (stat.) ± 0.09 (syst.) ± 0.01 (lumi.) pb	Ť	
combined $\mu j j$ and $e j j$	0.42 ± 0.04 (stat.) ± 0.09 (syst.) ± 0.01 (lumi.) pb	WÉ	,> `````````````````````````````````
		и 2	<u>،</u>

QCD/EWK interference modelling, W+jets background modelling dominate systematics

Effective Field Theory for Quartic Couplings

- SM has 4 quartic interactions (QGCs): WWWW, WWZZ, WWγγ, and WWZγ
- Dim 6 OPE has QGC correlated with TGC→dibosons dominate their constraints
- 19 new quartic terms become relevant at Dim 8. Neutral 4 boson vertices can be non-zero (ZZZZ, ZZZγ, ZZγγ, Zγγγ).
- Manifested as triboson or vector-boson scattering phenomena

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	Х	Х	Х	Ο	Ο	Ο	Ο	Ο
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	Х	Х	Х	Х	Х	Х	Х	Ο
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	Ο	Х	Х	Х	Х	Х	Х	Ο
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	Ο	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	Ο	0	Х	Ο	0	Х	Х	Х

WW QGC via two-photon production

JHEP 1307 (2013) 116

- First search for photon-photon scattering production of WW
- WWγγ quartic gauge coupling one of the amplitudes
- Two eµ events observed with no UE present
- First quartic gauge coupling limits at LHC; WWγγ limit two orders better than LEP or Tevatron!

WW QGC via two-photon production

- First search for photon-photon scattering production of WW
- WWγγ quartic gauge coupling one of the amplitudes
- Two eµ events observed with no UE present
- First quartic gauge coupling limits at LHC; WWγγ limit two orders better than LEP or Tevatron!

July 2013	LEP L3 limits D0 limits	—	CMS WW γ limits CMS $\gamma\gamma \rightarrow$ WW I	s imits		
Anomalous WW	γγ Quartic Coupling limits @95% C.L.	Channel	Limits	L	V	s
		ww γ	[- 15000, 15000]	0.43fb ⁻¹	0.20	TeV
-		$\gamma\gamma ightarrow WW$	[- 430, 430]	9.70fb ⁻¹	1.96	TeV
a⁰″/∆² TeV⁻²		WW γ	[- 21, 20]	19.30fb ⁻¹	8.0	TeV
0.	•••••	$\gamma\gamma ightarrow WW$	[- 4, 4]	5.05fb ⁻¹	7.0	TeV
		ww γ	[- 48000, 26000]	0.43fb ⁻¹	0.20	TeV
		$\gamma\gamma ightarrow WW$	[- 1500, 1500]	9.70fb ⁻¹	1.96	TeV
$a^{W}/ \wedge^2 T a W^{-2}$		WW γ	[- 34, 32]	19.30fb ⁻¹	8.0	TeV
	- ····-	$\gamma\gamma {\rightarrow} {\bf WW}$	[- 15, 15]	5.05fb ⁻¹	7.0	TeV
f _{т,0} /∆ ⁴ TeV ⁻⁴		ww γ	[- 25, 24]	19.30fb ⁻¹	8.0	TeV
f _{T,0} / ∧ ⁴ TeV ⁻⁴	$10^2 - 10 - 1$ 1 1 10 $10^2 10^3 10^4 10^4$	wwγ n ⁵	[- 25, 24]		19.30fb ⁻¹	19.30fb ⁻¹ 8.0

$W\gamma\gamma$ evidence at LHC

<u>1503.03243</u>

- ~80 excess Wyy events observed over background for photon PT > 20 GeV, significance is 3σ
- Fake photon background from W+jets is largest systematic
- aQGC limits obtained from $M\gamma\gamma$ distribution

Electron channel	Muon channel
$N_{ m jet}$	≥ 0
$15.3 \pm 4.8 (\text{stat.}) \pm 5.3 (\text{syst.})$	$30.5 \pm 7.7 (\text{stat.}) \pm 6.8 (\text{syst.})$
$1.5 \pm 0.6 (\text{stat.}) \pm 1.0 (\text{syst.})$	11.0 ± 4.0 (stat.) ± 4.9 (syst.)
$11.2 \pm 1.1 (\text{stat.})$	$3.9 \pm 0.2 (\text{stat.})$
$2.2 \pm 0.6 (\text{stat.})$	$6.7 \pm 2.0 (\text{stat.})$
30.2 ± 5.0 (stat.) ± 5.4 (syst.)	$52.1 \pm 8.9 (\text{stat.}) \pm 8.4 (\text{syst.})$
47	110
	$ \begin{array}{r} \mbox{Electron channel} \\ \hline $N_{\rm jet}$ \\ \hline $15.3 \pm 4.8 ({\rm stat.}) \pm 5.3 ({\rm syst.})$ \\ \hline $1.5 \pm 0.6 ({\rm stat.}) \pm 1.0 ({\rm syst.})$ \\ \hline $11.2 \pm 1.1 ({\rm stat.})$ \\ \hline $2.2 \pm 0.6 ({\rm stat.})$ \\ \hline $30.2 \pm 5.0 ({\rm stat.}) \pm 5.4 ({\rm syst.})$ \\ \hline 47 \\ \end{array} $

 SM electroweak symmetry breaking with Higgs essential to preserve vector boson scattering cross section unitarity

• Same-sign WW vector boson scattering production provides attractive S/B at LHC

 Anomalous differential cross sections would indicate extended Higgs sector (e.g. George-Machacek H++), new particles, or (giant) anomalous QGCs

PRL 113 (2014) 141803 PRL 114 (2015) 051801

• The 8 TeV data have been searched by both CMS and ATLAS for same-sign WW+2 jets

ATLAS: 500 GeV dijet mass and 2.4 rapidity gap define signal rich VBS region

ATLAS: Good agreement with SM expectation in signal and control regions. Background mainly from real multilepton sources.

VBS Signal Region									
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	Total					
$W^{\pm}W^{\pm}$ jj Electroweak	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4	13.9 ± 1.2					
$W^{\pm}W^{\pm}$ jj Strong	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08	1.34 ± 0.26					
WZ/γ^* , ZZ , $tar{t}+W/Z$	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5	8.2 ± 1.9					
$W + \gamma$	0.7 ± 0.4	1.3 ± 0.7	_	2.0 ± 1.0					
OS prompt leptons	1.39 ± 0.27	0.64 ± 0.24	-	2.0 ± 0.5					
Other non-prompt	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19	2.3 ± 0.7					
Total Predicted	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8	29.8 ± 3.5					
Data	6	18	10	34					

- Cross section in VBS region is SM-like with 3.6 σ significance (2.8 expected)
- first evidence for vector boson scattering!
- Limits obtained on aQGCs in a unitarized model, $\Lambda\approx 650~\text{GeV}$ for c ≈ 1

- CMS: 500 GeV dijet mass and 2.5 dijet rapidity gap, with top veto, Z veto, and dilepton mass > 50 GeV
- Most remaining background is fake/non-prompt leptons

Observed events agree with SM predictions

	Nonprompt	WZ	VVV	Wrong sign	WW DPS	Total bkg.	W [±] W [±] jj	Data
W^+W^+	2.1 ± 0.6	0.6 ± 0.1	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	3.1 ± 0.6	7.1 ± 0.1	10
W^-W^-	2.1 ± 0.5	0.4 ± 0.1	0.1 ± 0.1	—	_	2.6 ± 0.5	1.8 ± 0.1	2
$W^{\pm}W^{\pm}$	4.2 ± 0.8	1.0 ± 0.1	0.3 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	5.7 ± 0.8	8.9 ± 0.1	12

Experimental SM milestones of LHC Run 1

- 1. Terascale production of jets, vector bosons, and tops
- Uncovered novel production mechanisms: VBS WW, VBF Z and W, tW, ttV
- 3. Testing beyond NLO QCD: NLO+PS, NNLO, NLO EWK

