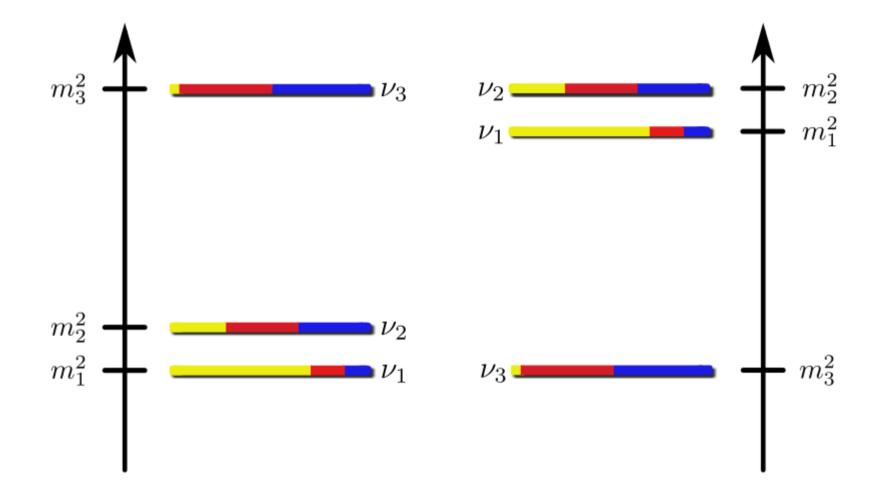
Introduction to neutrino theory

Pilar Coloma

‡ Fermilab

CTEQ school PITT PACC, University of Pittsburgh, July 11, 2015

Leptonic mixing



Neutrino oscillation probabilities $\mathcal{L}^{\nu} = \mathcal{L}_{CC}^{\nu} + \mathcal{L}_{NC}^{\nu} + \mathcal{L}_{k}^{\nu} + \mathcal{L}_{m}^{\nu}$ $\overbrace{\mathcal{V}_{i}}^{\nu}$

CC interactions mix charged leptons and neutrinos:

$$\mathcal{L}_{CC}^{\nu} \sim U_{i\alpha}^{*} \left(\bar{l}_{\alpha} \gamma_{L}^{\mu} \nu_{i} W_{\mu}^{+} + h.c. \right)$$

Neutrinos in flavor space are superposition of mass eigenstates. In propagation, each wave packet evolves separately.

$$|\nu_{\alpha}\rangle = \sum_{j} U_{\alpha j}^{*} |\nu_{j}\rangle$$

$$\begin{aligned} & \text{The leptonic mixing matrix} \\ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & \text{Atmospheric} & \text{Reactor/Interference} & \text{Solar} \\ & \text{Pontecorvo, 1957} \\ & \text{Maki, Nakagawa, Sakata, 1962} & \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix} \end{aligned}$$

Neutrinos in flavor space are superposition of mass eigenstates. In propagation, each wave packet evolves separately.

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U^{\dagger} + V \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

P. Coloma - Intro to neutrino theory

Outline

- Part I: Adding neutrino masses to the SM
 - Dirac/Majorana masses
 - See Saw models
 - Neutrinoless double beta decay
- Part II: Neutrino Oscillations in three families
 - Oscillation probabilities in vacuum
 - Matter effects
 - The degeneracy problem

Outline

- Part III: New physics in neutrino oscillations
 - Non-Standard Interactions
 - Sterile neutrinos

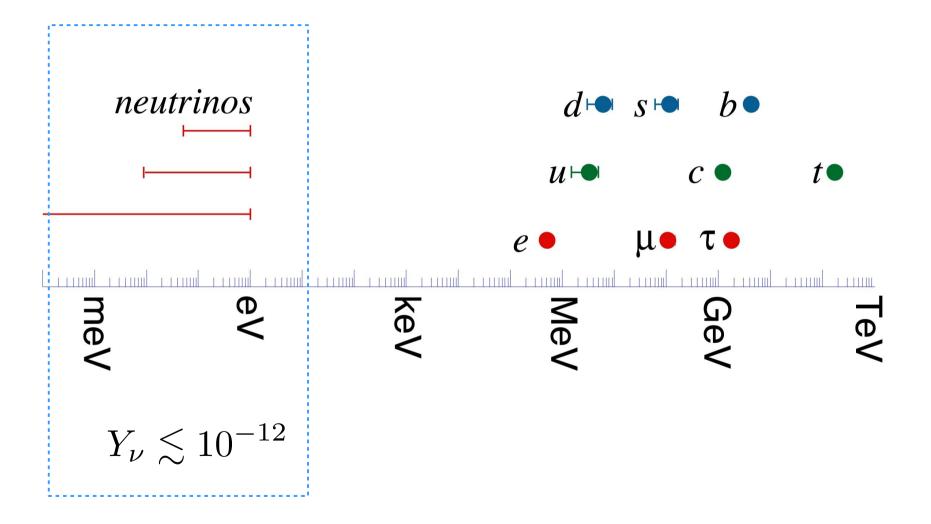
Part I: Adding neutrino masses to the SM

Are ν masses different?

When the SM was formulated, neutrino masses had not been observed yet. The simplest way to give them a mass is:

 $Y\overline{L}_L\widetilde{\phi}\nu_R + h.c. \quad \underline{}^{\rm EWSB} \rightarrow m_{dirac} \propto Yv$

Smallness of neutrino masses

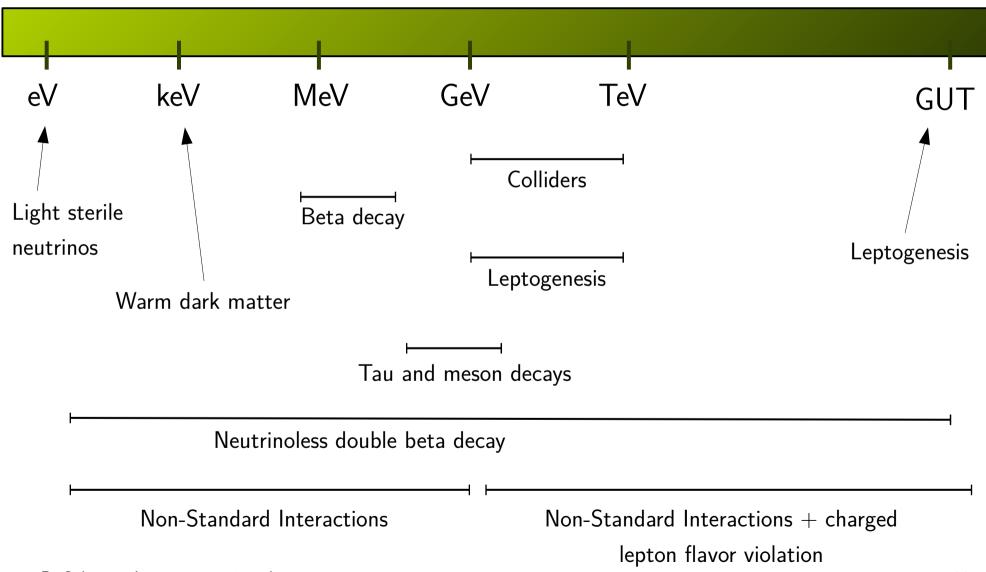


Are ν masses different?

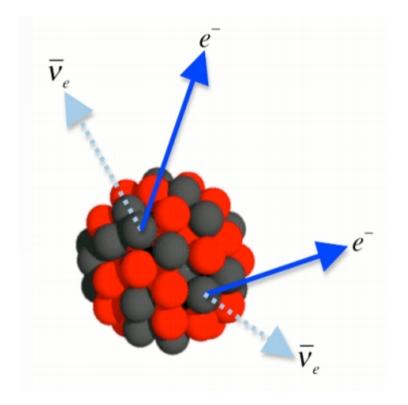
When the SM was formulated, neutrino masses had not been observed yet. The simplest way to give them a mass is:

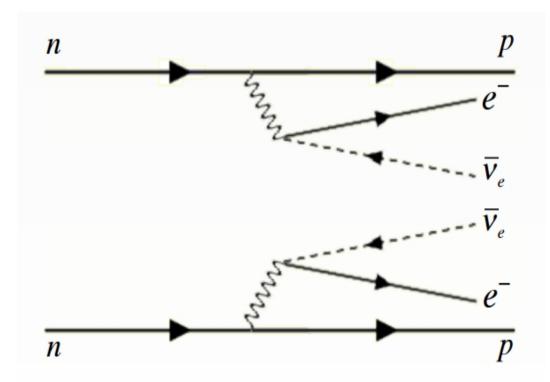
$$Y\overline{L}_L\widetilde{\phi}\nu_R + h.c.$$
 EWSB $m_{dirac} \propto Yv$

Scale of new physics

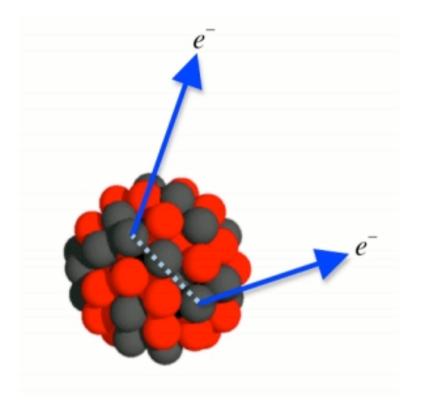


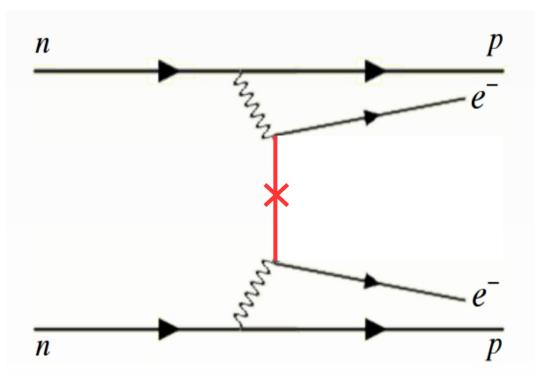
P. Coloma - Intro to neutrino theory





Figures from R. Saakyan's talk at NuPhys2014





Figures from R. Saakyan's talk at NuPhys2014

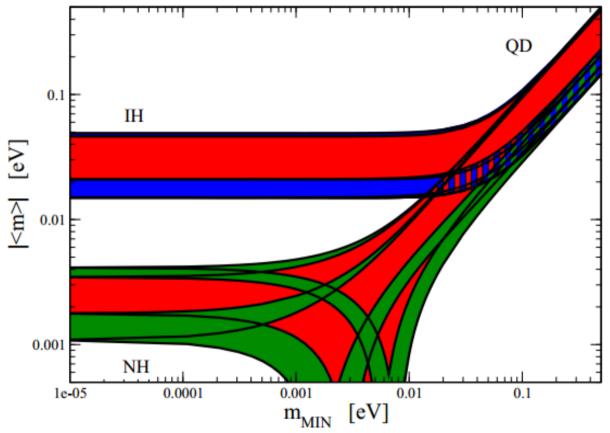


Figure from PDG

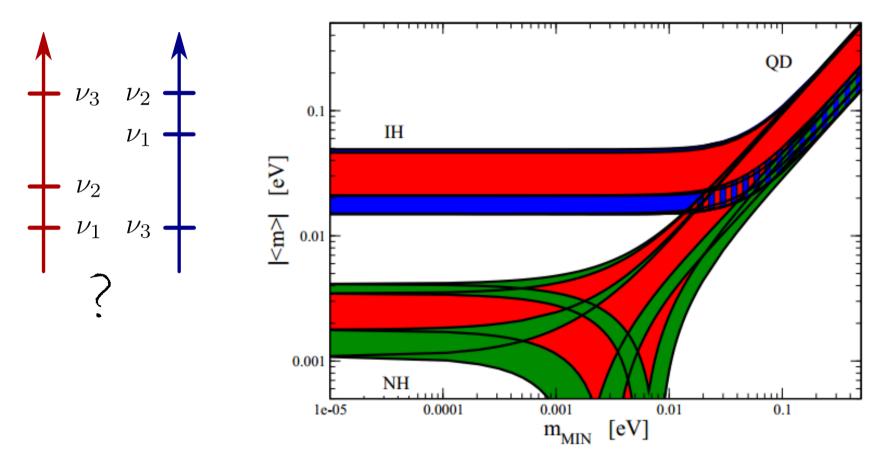
See also Pascoli and Petcov, 0711.4993 and hep-ph/0205022, and Bilenky, Pascoli and Petcov, hep-ph/0102265, among others

$$\mathcal{A} \propto \sum_{i} \bar{e} U_{ei} (\gamma_{\mu} P_{L})^{\dagger} C \frac{\not p + m_{i}}{p^{2} - m_{i}^{2}} U_{ei} \gamma_{\nu} P_{L} e$$
$$= \sum_{i} \bar{e}^{c} U_{ei} \gamma_{\mu} P_{R} \frac{m_{i}}{p^{2} - m_{i}^{2}} P_{R} \gamma_{\nu} U_{ei} e$$

In the case where the Majorana masses are heavy, only the light neutrinos contribute, and we get:

$$\mathcal{A} \propto \langle m_{0\nu\beta\beta} \rangle = \sum_{i=1}^{3} m_i U_{ei}^2$$

 $\langle m_{0\nu\beta\beta} \rangle = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i2\alpha_{21}} + m_3 s_{13}^2 e^{i2\alpha_{31}}$



After EWSB, the mass lagrangian for neutrinos with Majorana masses can be written as:

$$-\mathcal{L}_{mass}^{\nu} = \frac{1}{2}\bar{n}_{L}^{c}\mathcal{M}^{*}n_{L} + \text{h.c.}$$
$$\mathcal{M} = \begin{pmatrix} 0 & \frac{v}{\sqrt{2}}Y_{\nu} \\ \frac{v}{\sqrt{2}}Y_{\nu}^{\dagger} & M \end{pmatrix} \qquad n_{L} = \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \end{pmatrix}$$

In the limit M » v, the diagonalization of the mass matrix gives:

$$m_{light} \sim \frac{v^2}{2} Y_{\nu} \frac{1}{M} Y^t$$
$$m_{heavy} \sim M$$

Type I See Saw: only a right handed singlet is added to the SM particles

Another way to obtain the same result is to start from an effective operator approach:

$$\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \,\delta \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \,\delta \mathcal{L}^{d=6} + \dots$$

Another way to obtain the same result is to start from an effective operator approach:

$$\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \,\delta \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \,\delta \mathcal{L}^{d=6} + \dots$$

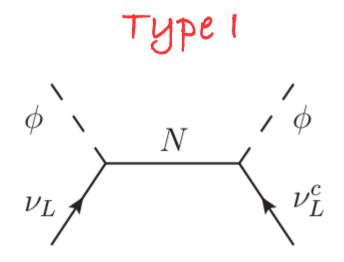
The only d=5 operator which can be built within the SM particle content is

$$\mathcal{L}^{(5)} = \frac{c_5}{\Lambda_{NP}} (\overline{L}_L \widetilde{\phi}) (\widetilde{\phi}^t L_L^c) \longrightarrow m_\nu \propto c_5 \frac{v^2}{\Lambda}$$

Weinberg, 1979

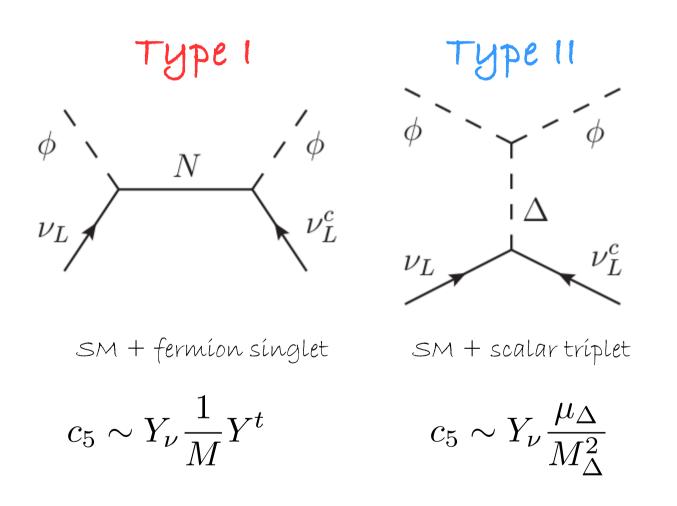
If neutrino masses are generated through this operator, we should expect additional effects coming from higher dimension operators too...

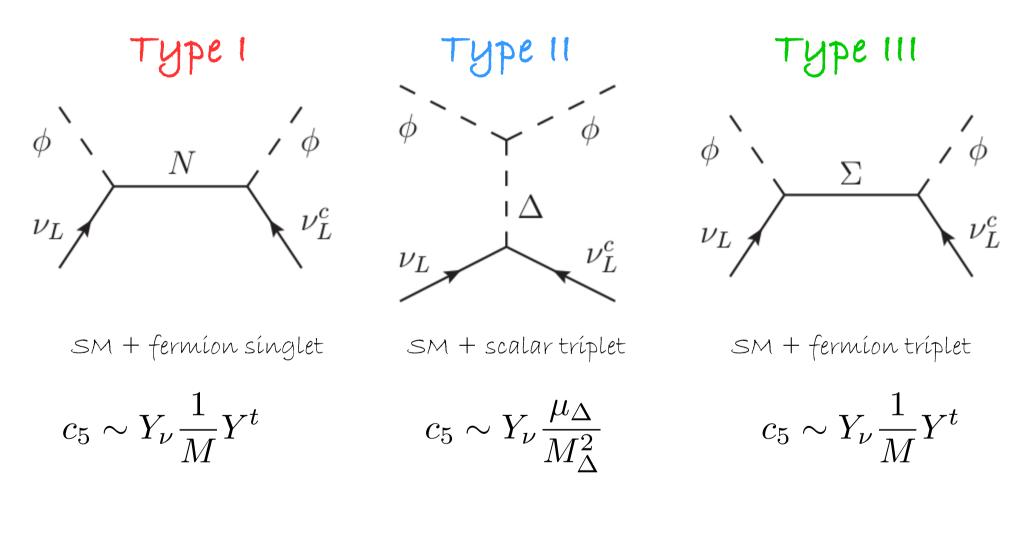
 \mathbf{O}



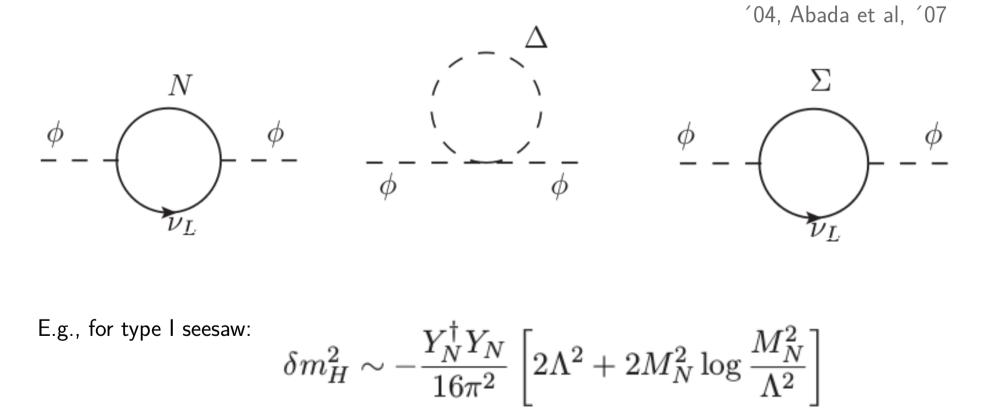
SM + fermíon sínglet

$$c_5 \sim Y_{\nu} \frac{1}{M} Y^t$$





See Saw models with very large Majorana masses contribute to the naturalness problem for the Higgs mass: Vissani, '98, Casas et al,



Part II: neutrino oscillations in the standard picture

Current status in neutrino oscillations

Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439 (see also 1312.2878 and 1405.7540)

Neutrino oscillations in vacuum

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{bmatrix} U_{2\times 2} \begin{pmatrix} 0 & 0 \\ 0 & \underline{\Delta m^2} \\ 2E \end{bmatrix} U_{2\times 2}^{\dagger} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$
$$U_{2\times 2} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$|\nu_{\alpha}(t)\rangle = \sum_{j} U_{\alpha j} e^{-iE_{j}t} |\nu_{j}\rangle$$

Neutrino oscillations in vacuum

In propagation, each mass eigenstate acquires a different phase. This produces the oscillation:

$$|\nu_{\alpha}(t)\rangle = \sum_{j} U_{\alpha j} e^{-iE_{j}t} |\nu_{j}\rangle$$

$$A_{\alpha\beta}(t) = \langle \nu_{\beta} |\nu_{\alpha}(t)\rangle = \sum_{j} U_{\beta j}^{*} U_{\alpha j} e^{-iE_{j}t}$$

$$P_{\alpha\beta}(t) = |\mathcal{A}_{\alpha\beta}(t)|^{2}$$

The two family approximation

Due to the very different oscillation amplitudes, the two-family approximation works very well in most oscillation experiments \rightarrow one oscillation frequency can usually be neglected

Oscillation probabilities in this approximation are rather simple:

$$P_{app} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$
$$P_{dis} = 1 - P_{app}$$

Types of oscillation experiments

Disappearance

If
$$\alpha = \beta$$

Very common in current/past experiments

<u>Appearance</u>

If
$$\alpha \neq \beta$$

CP violation is observable, but we need 3+ families

Note! the neutrino energy needs to be sufficient to create a charged lepton in the final state.

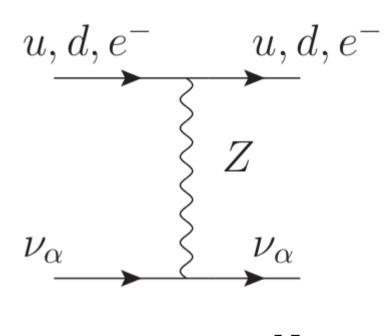
(this is typically an issue with nutau appearance experiments)

Neutrino oscillations in vacuum

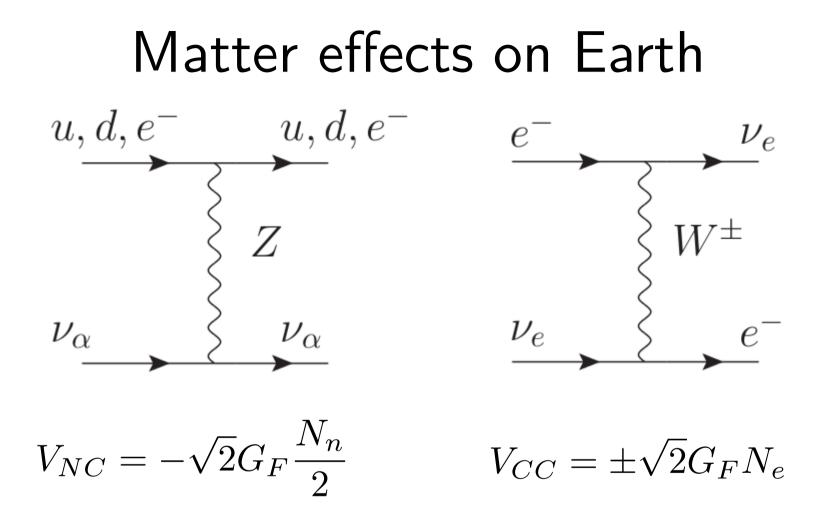
Assuming the matrix to be unitary, the probability can be written down, after some algebra, as:

$$\mathcal{P}_{\alpha\beta}(L) = \delta_{\alpha\beta} - 4\sum_{k,j>k} \operatorname{Re}(U_{\alpha j}U_{\beta j}^{*}U_{\alpha k}^{*}U_{\beta k})\sin^{2}\left(\frac{\Delta m_{jk}^{2}L}{4E}\right) + 2\sum_{k,j>k} \operatorname{Im}(U_{\alpha j}U_{\beta j}^{*}U_{\alpha k}^{*}U_{\beta k})\sin\left(\frac{\Delta m_{jk}^{2}L}{2E}\right)$$

Matter effects on Earth



$$V_{NC} = -\sqrt{2}G_F \frac{N_n}{2}$$



On Earth, N_e can be considered as a constant. Otherwise (in the Sun, for instance), things can be more complicated

Matter effects on Earth

In two-families:

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{bmatrix} U_{2x2} \begin{pmatrix} 0 & 0 \\ 0 & \frac{\Delta m^2}{2E} \end{bmatrix} U_{2x2}^{\dagger} + V \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$
$$U_{2x2} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
$$V = \begin{pmatrix} V_{CC} + V_{NC} & 0 \\ 0 & V_{NC} \end{pmatrix}$$

Wolfenstein, 1978 Barger, 1980 Mikheev and Smirnov, 1985

Matter effects on Earth

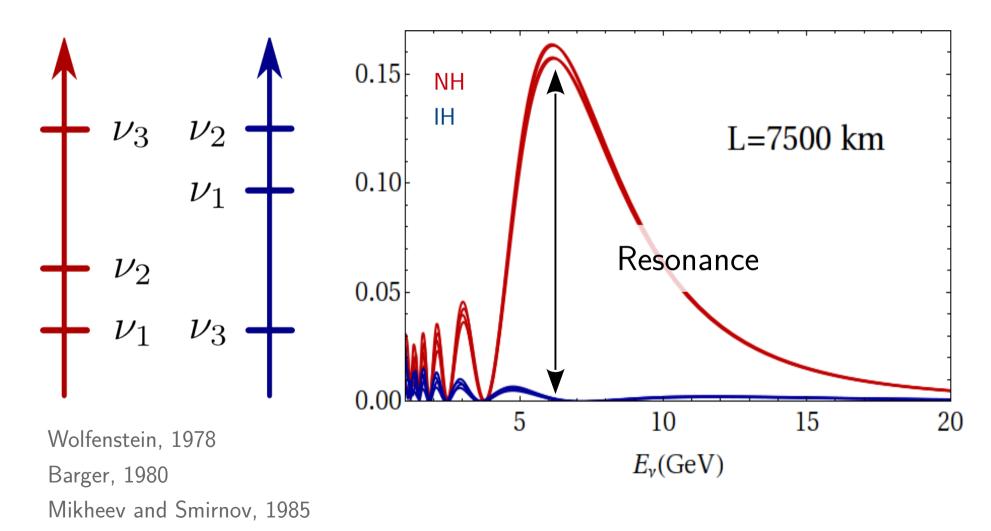
In two-families:

$$P_{app} = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E}\right)$$

$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - A)^2}; A = \frac{2EV}{\Delta m^2}$$

Even for small angles, the effective mixing angle in matter gets enhanced if the resonance condition is satisfied

The matter resonance



P. Coloma - Intro to neutrino theory

Why CP violation searches?

- In the SM (extended with neutrino masses), there are three possible sources of CP violation:
 - [–] Quark mixing \rightarrow large
 - Strong CP problem \rightarrow tiny!! (if any)
 - Lepton mixing \rightarrow ??
- The amount of CP violation in the quark sector of the SM is not large enough to explain the matter-antimatter asymmetry of the Universe.
- Leptogenesis?

Yanagida, 1979; Ramond, Gell-Mann, Slansky, 1979 Fukugita, Yanagida, 1986₃₇

CP violation searches

Three-family ν_{μ} appearance oscillation probability, in matter:

$$\begin{split} P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)} &= \boxed{s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right)}_{+} + 4 \\ &+ \boxed{sol}_{23} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{V}\right)^2 \sin^2 \left(\frac{VL}{2}\right)}_{\text{interf.}} \\ &+ \underbrace{\tilde{J} \frac{\Delta_{12}}{V} \frac{\Delta_{13}}{\tilde{B}_{\mp}} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\pm\delta - \frac{\Delta_{13}L}{2}\right)}_{\text{interf.}} \end{split}$$

$$\begin{split} \tilde{J} &\equiv \cos \theta_{13} \ \sin 2\theta_{13} \ \sin 2\theta_{23} \ \sin 2\theta_{12} \\ \Delta_{ij} &\equiv \frac{\Delta m_{ij}^2 L}{2E} \\ \tilde{B}_{\mp} &\equiv |V \mp \Delta_{13}| \end{split}$$
 Akhi

Cervera et al, hep-ph/0002108 (see also e.g., Freund, hep-ph/0103300, Akhmedov et al, hep-ph/0402175, and Asano, Minakata, 1103.4387)

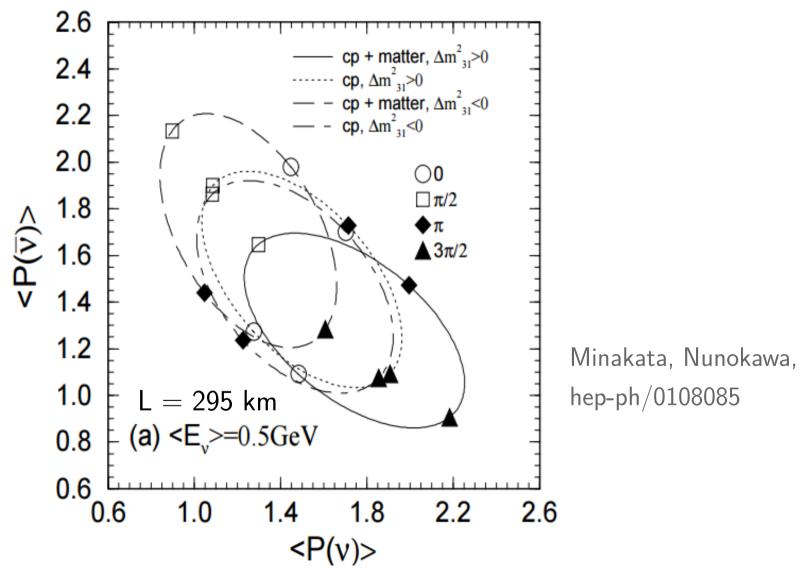
The degeneracy problem

Since we only have two measurable quantities which depend on the CP phase, degeneracies can arise with the other unknown parameters ($\theta_{_{23}}$ and the neutrino mass ordering)

For instance, the value of θ_{23} is usually measured through muon neutrino disappearance:

$$P_{\mu\mu} \simeq 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{\mu\mu}^2 L}{4E}\right)$$

Burguet-Castell *et al.*, hep-ph/0103258 Minakata, Nunokawa, hep-ph/0108085 Fogli, Lisi, hep-ph/9604415 Barger, Marfatia, Whisnant, hep-ph/0112119 39



The degeneracy problem

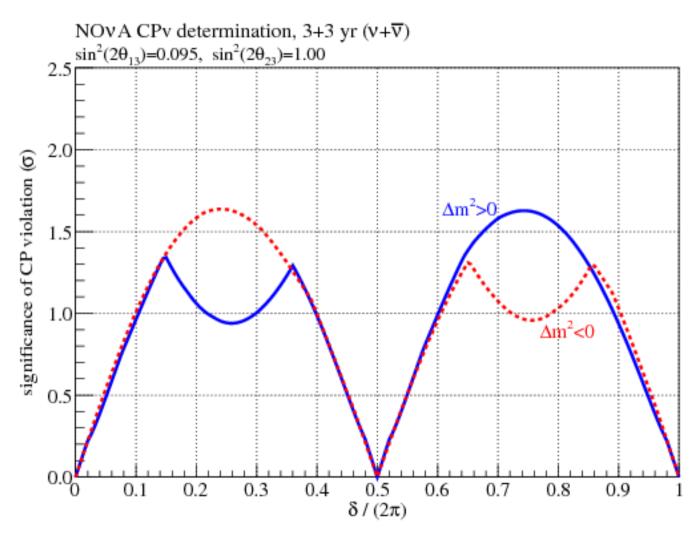


Figure taken from the webpage of the NOvA experiment

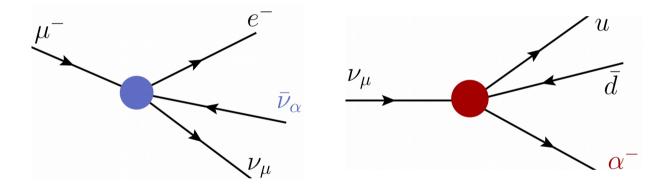
Part III: effects of new physics, some examples

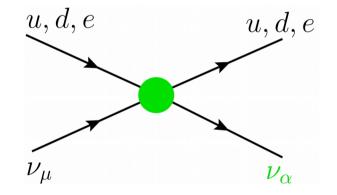
Non-Standard Interactions $\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \delta \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \delta \mathcal{L}^{d=6} + \dots$

Non-Standard Interactions

$$\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \delta \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \delta \mathcal{L}^{d=6} + \dots$$

NSI can affect neutrinos in production, detection and propagation processes





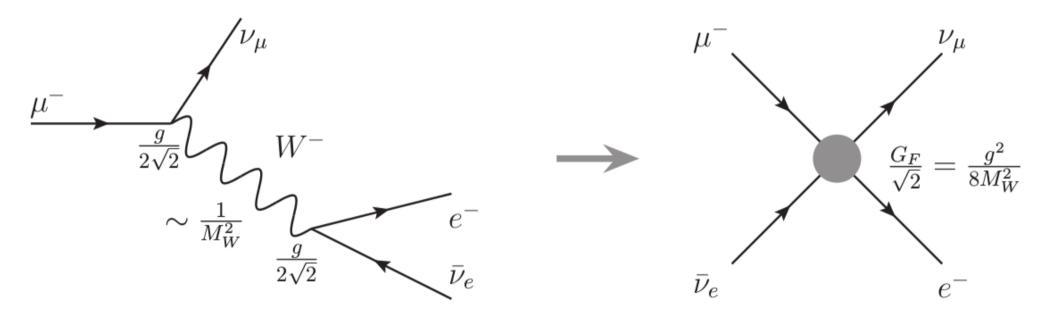
 $\varepsilon_{\mu\alpha}^{e\mu} \left(\overline{e} \gamma^{\rho} \mu \right) \left(\overline{\nu}_{\mu} \gamma_{\rho,L} \nu_{\alpha} \right) \qquad \varepsilon_{\mu\alpha}^{ud} V_{ud} \left(\overline{d} \gamma^{\rho} u \right) \left(\overline{\nu}_{\mu} \gamma_{\rho,L} \alpha \right)$

Near detectors

 $arepsilon_{\mulpha}^{f}\left(\overline{f}\gamma^{
ho}f
ight)\left(\overline{
u}_{\mu}\gamma_{
ho,L}
u_{lpha}
ight)$

Far detectors

Non-Standard Interactions



Non-Standard Interactions

 $|\epsilon_{\alpha\beta}^{\oplus}| < \begin{pmatrix} 4.2 & 0.33 & 3.0\\ 0.33 & 0.068 & 0.33\\ 3.0 & 0.33 & 21 \end{pmatrix}$

Davidson, Pena-Garay, Rius, Santamaria hep-ph/0302093 Biggio, Blennow, Fernandez-Martinez 0907.0097 [hep-ph]

Model independent bounds are rather weak. However,

• It is expected that any model giving NSI would produce small effects at low energies, since they are (at least) quadratically suppressed with the scale of NP

Non-Standard Interactions

 $|\epsilon_{\alpha\beta}^{\oplus}| < \begin{pmatrix} 4.2 & 0.33 & 3.0\\ 0.33 & 0.068 & 0.33\\ 3.0 & 0.33 & 21 \end{pmatrix}$

Davidson, Pena-Garay, Rius, Santamaria hep-ph/0302093 Biggio, Blennow, Fernandez-Martinez 0907.0097 [hep-ph]

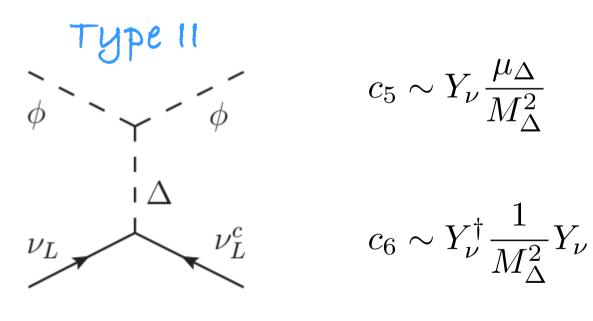
Model independent bounds are rather weak. However,

- It is expected that any model giving NSI would produce small effects at low energies, since they are (at least) quadratically suppressed with the scale of NP
- Any model of NP should preserve gauge invariance. This imposes stronger bounds on NSI through charged lepton processes (at least, $\sim 10^{-2}$)

Antusch, Baumann, Fernandez-Martinez, 0807.1003 [hep-ph] Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]

Non-Standard Interactions $\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{L}} \delta \mathcal{L}^{d=5} + \frac{1}{\Lambda_{Fl}^2} \delta \mathcal{L}^{d=6} + \dots$

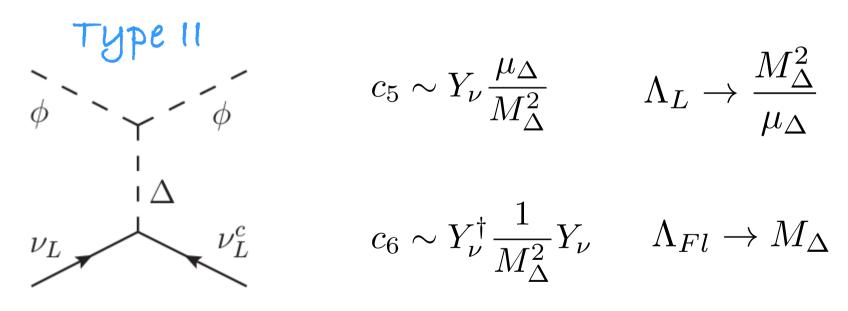
Example:



SM + scalar tríplet

Non-Standard Interactions $\mathcal{L}^{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{L}} \delta \mathcal{L}^{d=5} + \frac{1}{\Lambda_{Fl}^2} \delta \mathcal{L}^{d=6} + \dots$

Example:



SM + scalar tríplet

Sterile neutrinos at the eV scale

- Sterile neutrinos at the eV scale could only be observed via oscillations (sterile!)
- Possible signatures:
 - Disappearance
 - NC event rates
 - Appearance
- Some anomalies observed at the 2-3 sigma CL

Sterile neutrinos at the eV scale

Furthermore, there is a tension between different data sets

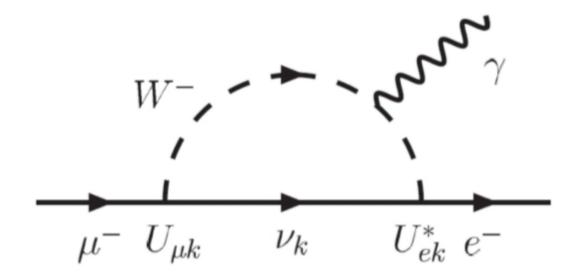
$$P_{app} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$
$$P_{dis} = 1 - P_{app}$$
$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

Neutrino tasks for the next 20 years

- is there CP violation in the leptonic sector? What is the value of δ ?
- what is the ordering of neutrino masses?
- which flavor of neutrinos dominates the third mass eigenstate?
- why is the mixing in the leptonic sector so different from the mixing in the quark sector? does the flavour of the SM obey a certain pattern?
- are there more than three neutrino species?
- are neutrinos Majorana particles?
- why are neutrinos so light with respect to the charged leptons?
- what is the value of the lightest neutrino mass?
- are there non-standard neutrino interactions?

Thank you, and hope to see you tonight at recitation!

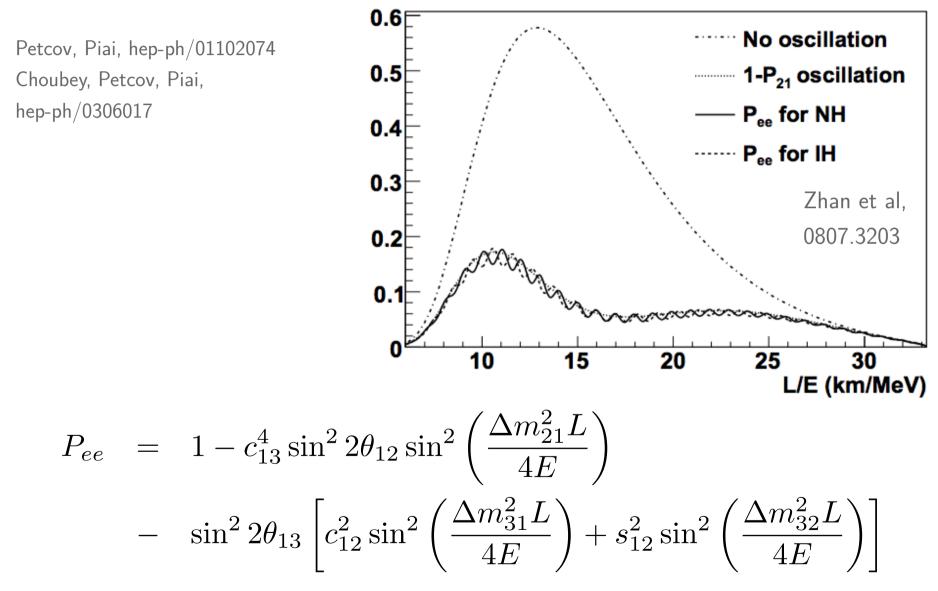
Charged lepton flavor processes



In the SM with neutrino masses, this process exists, but is tiny!

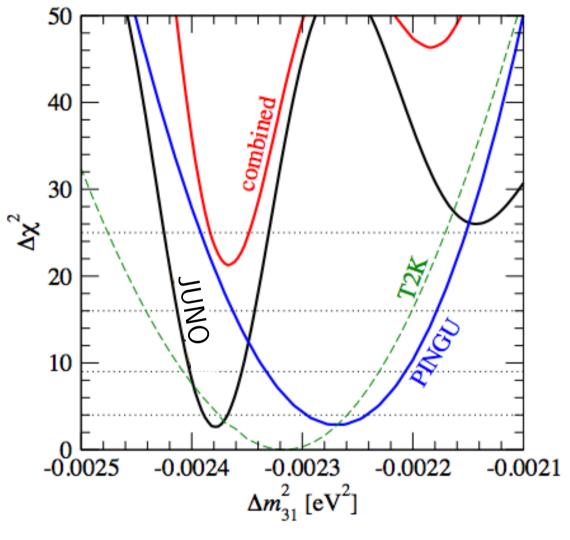
$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

Reactor experiments at medium L



Precise measurement of mass splittings

The ordering of neutrino masses may as well come from a global fit to different data



Blennow, Schwetz, 1306.3988 [hep-ph] (see also Li *et al*, 1303.6733 [hep-ph], for instance) 57