Neutrino Experiment

Steve Dytman, Univ. of Pittsburgh CTEQ 11 July, 2015

- v oscillations (T2K)
- ν oscillations \rightarrow νA cross sections
- MINERvA CC pion production results
- v oscillations (sterile v, MiniBooNE)
- Future

Neutrinos...

- v are fundamental (sort of)
 - Mass from Higgs VEV coupling to right-handed v? (hard to decide?)
 - Majorana or Dirac? $(\mathbf{0}_{V}\beta\beta)$
- v are weird (definitely)
 - Long mean free path (ly) makes experiments very difficult (yrs)
 - \blacktriangleright Historically, many early ν experiments obtained Nobel Prize.
 - Closeness in mass of 3 known flavors makes oscillation easy to measure (different physics than K⁰, B⁰ - PMNS vs. CKM mixing)
 - CP violation in lepton sector source of matter-antimatter imbalance?
 - Lack of a limit on number of flavors (sterile) gives many possibilities
- US high energy physics has decided to go after lepton CP violation through v oscillation as a primary goal (DUNE/FNAL). Cost will be >\$1B!

v Oscillation - disappearance

- Think of it as 2 coupled oscillators (normal vs. osc mode)
- E.g. v_{μ} disappearance is standard measurement

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \frac{\sin^2 2\theta}{\sin^2 (1.267 \Delta m^2 L / E)}$$

- I mixing angle, 1 squared mass diff.
- Use wide-band beam
- Measure # of v_{μ} in near (all v_{μ}), far (oscillated sample) detectors.
- Take ratio as a function of E_v
- Collect your prize!

v Oscillation - appearance

If neutrinos have mass, the flavor eigenstates are mixtures of the mass eigenstates. The neutrino mass matrix has 6 parameters.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

2 square mass differences $(\Delta m_{21}^2, \Delta m_{32}^2)$,

- **3** mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$
- 1 CP violation phase, δ_{CP} .
- Δm_{21}^2 and θ_{12} were determined by solar/reactor neutrino oscillation. $\Delta m_{21}^2 = (7.50 \pm 0.20) \times 10^{-5} eV^2$, $\sin^2 2\theta_{12} = 0.857 \pm 0.024$
- $|\Delta m_{32}^2|$ and θ_{23} were studied by atmospheric/long-baseline experiments. $|\Delta m_{32}^2| = (2.32 + 0.12) \times 10^{-3} eV^2$, $\sin^2 2\theta_{23} > 0.95$

v Oscillation - appearance

- At present, remaining unknown parameters include the CP violation phase δ_{CP} , and mass hierarchy, sign of $\Delta m_{32}^2 (\sim \Delta m_{31}^2) = m_3^2 m_2^2$.
 - The v_e appearance probability contains δ_{CP} term, and Δm_{31}^2 term.

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E_{\nu}}\right) \left(1 + \frac{4\sqrt{2}G_{F}n_{e}E}{\Delta m_{31}^{2}}(1 - 2\sin^{2} \theta_{13})\right) \\ - \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta_{CP} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E_{\nu}}\right) \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{\nu}}\right)$$

- Appearance of electron neutrino events can determine $sin^2 2\theta_{13}$. It will also provides constraints on δ_{CP} and mass hierarchy.
- Disappearance of muon neutrino events as well as distortion of the energy spectrum can determine |∆m²₃₂| and sin²2θ₂₃ precisely.
 5 CTEQ Neutrino Experiment

In T2K...

- Appearance of electron neutrino events can determine $sin^2 2\theta_{13}$. It will also provides constraints on δ_{CP} and mass hierarchy.
- Disappearance of muon neutrino events as well as distortion of the energy spectrum can determine $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$ precisely.

T2K experiment

- Second generation long-baseline neutrino-oscillation experiment; from Tokai to Kamioka. The experiment started in 2009.
- High intensity almost pure v_{μ} beam from J-PARC is shot toward the Super-Kamiokande detector 295km away.

CTEQ Neutrino Experiment

T2K Beam line and Detectors

Beamline

- Primary beamline
- Target station/focusing horns
- Decay Pipe

9

 Beam dump @ ~110m downstream

Detectors

- Muon monitors@ ~120m
- Near detectors@ ~280m
- Far detector@ 295km (Super-Kamiokande)

Off-axis beam : the center of the beam direction is adjusted to be 2.5° off from the SK direction.

Off-axis beam (2.5°) peak energy~0.6 GeV

Merits of the off-axis beam are:

•The neutrino energy peak agrees with the oscillation maximum. Neutrinos oscillate effectively.

• High energy (> 1 GeV) neutrinos are suppressed.

- Neutrino energy spectrum is calculated from CCQE events; ν_μ + n → μ + p.
 Fraction of CCQE events is small in high energy range and some of non-CCQE events are serious background for the CCQE selection.
- Neutral Current (NC) π^0 events are background for the v_e appearance search. NC π^0 events are reduced by the suppression of high energy neutrinos.

•Water Cherenkov detector has better performance for single charged particle events.

10

ND-280 near detector

- The detectors were made in the underground experimental hall, 33.5m depth and 17.5m diameter.
 It is located at 280m downstream from the target.
- Two detectors were installed; they are On-axis Detector in the direction of the neutrino beam center, and Off-axis detector in the direction of Super-Kamiokande.

Near Detectors at 280m downstream

- ND280 is made from several components.
- 2 FGDs (Fine-Grained Detectors) consist of scintillators and water as target material.
- 3 gas-filled TPCs (Time Projection Chambers) record track of charged particles.
- All components are in 0.2T of magnetic field. The magnets were previously used in UA1 and NOMAD.
- Charged particles are bent by the magnetic field. The curvature of the track recorded by TPC are used to determine the momentum of the particles.
- Neutrino flux as well as neutrino interactions can be studied from the reconstructed track information.
- Other components are POD (π⁰ detector), ECAL(Electromagnetic CALorimeter) and SMRD(Side Muon Range Detector).

Far detector (Super-Kamiokande (SK))

- 50kt water Cherenkov detector with 11129 20-inch diameter PMTs. The fiducial volume of the detector is 22.5kton.
- Located at 1000m underground in Kamioka mine, Japan. The distance from the J-PARC is 295 km.
- The experiment started in 1996, and SK-IV(after electronics replacement) is in operation since 2008.

T2K Collaboration

The T2K collaboration includes about 500 physicists from 11 countries (Canada, France, Germany, Italy, Japan, Poland, Russia, Spain, Switzerland, UK, USA).

History of the T2K beam

- Physics run started in Jan. 2010. In May 2015, the maximum beam power achieved is ~345kW.
- In June 2014, anti-neutrino beam has been started by changing the current direction of the magnetic horns.
- Integrated pot (protons on target) until Mar. 2015 are: 10.12x10²⁰ (total) = 7.00x10²⁰ (neutrino) + 3.12x10²⁰ (anti-neutrino). 15 CTEQ Neutrino Experiment II July, 2015

<u>μ/e identification in</u> <u>Super-Kamiokande</u>

 V_{μ}

Only direct Cherenkov light from μ Clear Cherenkov ring edge

$v_e \rightarrow e$

Cherenkov light from e-m shower. Electrons and positrons are heavily scattered.

^ve

Cherenkov ring edge is fuzzy.

μ/e misidentification probability is less than 1%. CTEQ Neutringues tom

Super-Kamiokande Pum 4234 Event 367257 87-86-58:28.82:58 Beneri 2504 hats, 8279 p8 subari 5 hits, 6 pt (in-time) TELBORY 201 Poll? 8 malli 993.8 im Ft as-Like, p + 769.2 metric Harris X wild Parts 2 1000 1306 Times (ns) Super-Kamiokande Dun 4168 Event 7899421 17-16-12.12;15:17 Scowy: 2952 hats, 1743 gd ester: 5 hits, 2 pt (in-time) Yrappet 20: 2nil. 8 mall: 206.4 mm #1 s-11ks, g + 422.5 mm/s Residered (res) 3000 1500 tp://hep.bu.edu/~superk/atmnu/ Times (ris)

Results v_{μ} disappearance

- Disappearance of muon neutrino events as well as a distortion of neutrino energy spectrum is found.
- Best-fit oscillation parameters are calculated to be

 $\Delta m_{32}^2 = (2.51 \pm 0.10) \times 10^{-3} eV^2$ $\sin^2 \theta_{23} = 0.514 \substack{+0.055 \\ -0.056}$

for normal hierarchy, and

 $\Delta m_{13}^2 = (2.48 \pm 0.10) \times 10^{-3} eV^2$ $\sin^2 \theta_{23} = 0.511 \pm 0.055$

for inverted hierarchy.

These results give most stringent constraints for sin²θ₂₃

Results- v_e appearance

Where expectation for no oscillation is 4.9±0.6(sys.) events,
 28 events are found. The signal is 7.3σ and it is certainly discovery.

Combined v_e and reactor results

- The T2K results are combined with constraints from reactor experiments (Daya Bay, Reno and Double Chooz); $sin^2 2\theta_{13} = 0.095 \pm 0.010$ (PDG2013).
- It seems that negative δ_{CP} with normal hierarchy is favored.
- From more complicated and exhaustive statistical analysis, $0.146\pi < \delta_{CP} < 0.825\pi$ (NH) $-0.080\pi < \delta_{CP} < 1.091\pi$ (IH)

are excluded with 90% C.L.

20

The results are hints towards
 δ_{CP} ~ -π/2 and normal hierarchy.

Problems

How do you measure beam energy?

- Choose topology that guarantees interaction (e.g. CCQE) and measure energy with kinematic equations (T2K, MiniBooNE)
- Measure all particles in final state (MINOS, DUNE?)

How do you predict neutrino spectrum?

- Extrapolate results from near to far detector
- How many v_e in beam if you are searching for $v_{\mu} \rightarrow v_e$?
- Calculate with Monte Carlo.
- How do you know backgrounds?
 - Measure if possible (NC π^0 in near det), use Monte Carlo
- What about the fact that v spectrum very different at near and far detectors?
 - Monte Carlo

Near detector constraints

- CCQE events, CC1π events, and CC_{dis} events are selected separately based on track topologies in ND280 FGD/TPC.
- p_µ and cosθ_µ distributions (data and MC) compared. All systematic errors related to cross sections and neutrino fluxes are adjusted from the comparison.
- Excellent agreement after parameter adjustment.
 The adjusted parameters can be also applied for SK.

 $\begin{array}{l} \text{CCQE}: \text{Charged Current Quasi Elastic} \\ \text{CC1}\pi: \text{Charged Current } 1\pi \text{ resonant prod} \\ \text{CC}_{\text{dis}}: \text{Charged Current Deep Inelastic} \\ \text{Scattering} \end{array}$

Cross section definitions See Formaggio & Zeller RMP 2012

- Most nucleon data from bubble chambers (low statistics)
- MINERvA measures A dependent cross sections 1-10 GeV

Verifying MC calculation of beam flux

- Some of T2K members join CERN NA61/SHINE : "Study of hadron productions in hadron-nucleus and nucleusnucleus collisions at CERN SPS"
- The energy of the proton beam is adjusted to the T2K proton beam, 30GeV. Thin (2cm) carbon plate is used as target. The carbon material is same as T2K
- Production of pions and kaons are precisely measured by TPC and TOF. Their fluxes are measured as a function of momentum and angle. π/V $P_{\pi,K}$

24

 π/K

H

Systematic errors & backgrounds

T2K syst errors for $v_{\mu} \rightarrow v_{e}$ (2014)

Source of Uncertainty	Est. stan. dev.
Cross section (MC)	4.9 %
Cross section (ND280), Flux	2.7%
Far Det, FSI	5.6%
Oscillation parameters	0.2%
TOTAL	8.1%

Measuring beam energy with CCQE (T2K)

• Experiments identify reaction with topology, calculate E_{ν} assuming single nucleon at rest. *Ambiguities!* $E_{\nu}^{QE} = \frac{2(M_n - E_B) E_{\ell} - \left[(M_n - E_B)^2 + m_{\ell}^2 - M_p^2\right]}{2}$

$$2\left[M_n - E_B - E_\ell + p_\ell \cos(\theta_\ell)\right]$$

- What if principal interaction was pion production and pion was absorbed?
- What if principal interaction was with correlated nucleons (MEC)? (plot from Martini, PRD87,013009 (2013)
- Nuclear model essential!

Jorge Morfin's summary (it's the nucleus!)

- The events we observe in our detectors are convolutions of: $Y_{c-like}(E) \alpha \phi(E' \ge E) \otimes \sigma_{c,d,e_n}(E' \ge E) \otimes Nuc_{c,d,e_n \rightarrow c}(E' \ge E)$
- $Y_{c-like}(E)$ is the event energy and channel / topology observed in the detector, not necessarily that which is produced. It is called c-like since it appears to be channel c but may not have been channel c at interaction.
- $\phi(\mathbf{E})$ is the energy dependent neutrino flux that enters the detector. With traditional meson-decay-source neutrino beams we can, with considerable effort, estimate the incoming neutrino energy distribution to $\leq 10\%$ absolute and $\leq 7\%$ energy bin-to-bin accuracy. Significant contribution to systematic
- $\sigma_{c,d,e..}(E^{\prime} \ge E)$ is the measured or the Monte Carlo (model) energy dependent neutrino cross section off a nucleon within a nucleus. Form factors are modified within a nucleus compared to a nucleon. Significant contribution to systematics.
- $Nuc_{c.d.e. \rightarrow c}$ (E' \geq E) Nuclear Effects. In general the interaction of a neutrino with energy E' creating initial channel d,e... can appear in our detector as energy E and channel c.
 - Nuclear Effects a migration matrix that mixes produced/observed channels and ٠ energy. v and \overline{v} quite different. Significant contribution to systematics.

example

- DIS event at $E_v = 8 \text{ GeV}$
- Principal interaction result is μ^- , $2\pi^-$, $2\pi^+$, $2\pi^0$, p.
- After FSI, final state is μ^- , $1\pi^-$, $2\pi^+$, 4γ , 2p, 3n.
- Through π^- absorption and π^+ charge exchange, energy shifts toward neutral and more baryons.
- Cerenkov detectors don't see hadrons and scintillators and calorimeters don't see low energy hadrons or neutrons.
- Therefore, the energy could be measured as 4 GeV unless Monte Carlo can make up the difference.
- NuINT conferences have useful studies comparing theory and generators.

v interaction needs

- Measurements (or calculation) of all processes at higher
 v energy
- How they can mimic desired signal in detector
- Don't forget detectors are large and contain variety of materials, don't forget nuclear effects!
- Here's worst case calculation for DUNE using CCQE hypothesis. (Mosel, PRL 2014)
- hypothesis. (Mosel, PRL 2014)
 [H bubble chambers look really good now, but safety considerations make this impossible.]

MINERVA

- Cross section experiment at FNAL (NuMI beam line)
- Faking data 2009-13 with $\langle E_v \rangle \sim 4$ GeV, now 7 GeV
- Fine-grained scintillator

~60 collaborators from particle and nuclear physics

Centro Brasileiro de Pesqu	uisas Físicas	Otterbein University
Fermilab	Pontificia	Universidad Catolica del Peru
University of Florida		University of Pittsburgh
Université de Genève		University of Rochester
Universidad de Guanajuate	0	Rutgers University
Hampton University		Tufts University
Inst. Nucl. Reas. Moscow	U	niversity of California at Irvine
Mass. Col. Lib. Arts	Uni	versity of Minnesota at Duluth
Northwestern University	Unive	rsidad Nacional de Ingeniería
University of Chicago	Universidad 7	Fécnica Federico Santa María
		College of William and Mary

CTEQ Neutrino Experiment

MINERvA detector

Sample event (3 views for 3-d track)

Focus here on 2 recent results for CC Pion production

- Important component of Long Baseline expts (T2K, NOvA)
- Sensitive to principal interaction, nuclear medium, and final state interactions (FSI)

Theory primer

- Best calculations from nuclear theorists with background in electron scattering
 - Best nuclear models, medium corrections, FSI
- Event generators required to simulate experiment
 - Plan, analyze, describe data
 - Contain simplified versions of best theory
 - Developed, maintained by poorly understood, overworked experimenters
 - Better nuclear models are being introduced, but not in any of following plots.

Focus here on 2 recent results from MINERvA for Pion production

- MiniBooNE cross section results surprising, huge impact
- Do we really understand FSI (detail!)

Sample events

- XZ view, one of 3 views
- See charged hadron tracks
- See π⁰ if both photons convert to e⁺e⁻.

Event definitions

Charged pion

- μ[−] in MINOS
- ▶ 1.5<E_v<10 GeV</p>
- W(hadronic mass)<1.4
 GeV or <1.8 GeV
- Pion identification (tracking, Michel decay)

Neutral pion

- μ⁻ in MINOS
- ▶ 1.5<E_v<20 GeV
- > γ conversion length>15 cm
- Di-photon invariant mass $75 < M_{\gamma\gamma} < 195 \text{ MeV/c}^2$.
- ► W<1.8 GeV or no W cut

Kinematic Equations $E_v = E_\mu + E_H (E_H \text{ determined calorimetrically})$ $Q^2 = 2E_v (E_\mu - p_\mu \cos(\theta_{\mu\nu})) - m_\mu^2$ $W_{exp}^2 = -Q^2 + m_N^2 + 2m_N E_H (m_N \text{ nucleon mass})$ $W_{gen} : W_{exp} \text{ w/o the assumption of a nucleon at rest}$

Resolution plots (compared with Monte Carlo)

CTEQ Neutrino Experiment

11 July, 2015

Systematic errors

• Move dozens of variables, e.g. MA_{res} , detector energy scale, beam flux fit parameters by $\pm 1\sigma$.

1π results

- area normalized (GENIE too high ~30% for π^+)
- Absorption dip is filled in.

$1\pi^+$ result - detail

- Shape is very sensitive to FSI details
- Problems with principal vertex evident (old data)

$1\pi^+$ result - detail

- Wanted resolution of MiniBooNE controversy (why no dip for absorbed pions?)
- Both experiments largely sensitive to Δ formation/decay + π FSI
- Verified lack of a dip, but normalization looks wrong.
- Although MINERvA at higher v energy, cross section is not much bigger. (new problem)

CTEQ Neutrino Experiment

Q² tests nuclear structure properties

- Momentum distribution/nuclear medium effects matter.
- ▶ FSI doesn't seem to matter for Q².
- Nice separation of physics

d₀/dQ² (10⁻⁴⁰ cm²/nucleon/(GeV/c)²)

Q² results

- All event generators use Relativistic Fermi Gas, no medium effects, no NN correlations.
- Despite simplicity of models, good agreement in shape.
- Charged pion distr has coherent prod, too big in NEUT

Short Baseline, Reactor experiments

- Testing ground for new exotic results, e.g. sterile v.
- > Variety of 2-3 σ results, waiting for something definitive.

experiments

- LSND was beam dump expt at LANL, π decay at rest is powerful technique (flux known).
- MiniBooNE was accelerator expt at FNAL, large mineral oil Cerenkov detector (CH₂). [no near det]

MiniBooNE results

Aguilar-Arevalo et al., Phys. Rev, Lett. 110, 161801 (2013)

- Goal was to prove or disprove LSND, results mixed.
- Excess at new L/E is surprising.
- Consistency between n and nbar means no CPT violation.

Kopp, Malahorn, Maltoni, Schwetz fitting results

- Define mixing matrix as extension of 3 flavor matrix.
- Consider 3+1, 3+2, and 1+3+1 models (3=valence)
- They consider appearance (LSND, MiniBooNE), disappearance (KARMEN, SciBooNE), reactor experiments.

▶ Here are sample results for 3+1.

3+1 fit results

- LSND and MB consistent
- See tension between appearance and global fits
- Total χ^2 suffers

Events/MeV

1.0

MB y app

MB v app

11

Vev

data (22 dof)

3+1 global

3+2 global

1+3+1 app

from µ , from K

other bg

1+3+1 global

null results

appearance

10-1

3+1 app

3+2 app

 χ^2 :

39.25

32.8

38.09

24.02

32.33

25.29

3+2 fit

- Better overall χ², but tension between app and disp remains.
- No clean result!

Experiment	χ^2_{3+1}/dof	χ^2_{3+2}/dof	χ^2_{1+3+1}/dof
LSND	11.0/11	8.6/11	7.5/11
MiniB ν	19.3/11	10.6/11	9.1/11
MiniB $\bar{\nu}$	10.7/11	9.6/11	12.7/11
E776	32.4/24	29.2/24	31.3/24
KARMEN	9.8/9	8.6/9	9.0/9
NOMAD	0.0/1	0.0/1	0.0/1
ICARUS	2.0/1	2.3/1	1.5/1
Combined	87.9/(68 - 2)	72.7/(68-5)	74.6/(68-5)

Future - Short base line

- MicroBoone (170 ton Lar) just finished filling, starts data taking soon. $\langle E_{v} \rangle \sim 0.8$ GeV. They will separate e from γ vs. MiniB. Focus on sterile neutrinos.
- FNAL will go ahead with building LAr1-ND and moving ICARUS from CERN.
- Intermediate Energy workshop (WINP, <u>http://www.bnl.gov/winp/</u>) had many great ideas – new reactor expts, radioactive source (e.g. ⁵¹Cr), new cyclotron idea.
- JUNO (China) 1km base line (approved). Try to measure neutrino heirarchy

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

Plan for BNB experiments

Finished 2018, plan for 3 years data taking

CTEQ Neutrino Experiment

Future - Long base line

Deep Underground Neutrino Expt (DUNE)

- Large international experiment hosted by FNAL
- 4 x 10kT LAr detector at Sanford Underground Lab (Lead, SD)
- Mass hierarchy, CP violation
- Proton decay
- Supernova neutrinos

Future - Long base line

Deep Underground Neutrino Expt (DUNE) L=1300 km

- Large international experiment hosted by FNAL (major upgrade)
- Near detector at FNAL (schematic in left diagram, location in right)
- 4 x 10kT LAr detector at Sanford Underground Lab (Lead, SD)
- Mass hierarchy, CP violation with intense (\geq 1.2 MW) v, vbar beams
- Proton decay, Supernova neutrinos

Projected results (CDR)

summary

v experiments very different than collider

- Target=detector; favor large, monolithic blocks
- Beam hard to produce, even harder to monitor
- Nuclear effects make interpretation tricky

Recent exciting results

- ► T2K sees v_{μ} disappearance, $v_{\mu} \rightarrow v_{e}$ appearance (θ_{13} , θ_{13} , Δm_{13}^{2} ,)
- Minerva new pion cross section results don't make things easier
- Short baseline experiments see surprising results with hints of sterile neutrino

Future

- Short baseline experiments at FNAL $1 \rightarrow 3$ detectors by 2018 (sterile)
- LBL expts HyperK, DUNE, PINGU proposed for hierarchy, CP

C

NuMI Beam (~same for MINOS, NOvA)

- NuMI is a "conventional" neutrino beam, neutrinos from focused pions
- For MINERvA, flux must be calculated, use hadron prod data.
- protons on target (POT) to MINERvA
 - neutrino (LE): 3.9E20 POT
 - anti-neutrino (LE): 1.0E20 POT

NuMI Low Energy Beam Flux

FUNFACT at JLab 14 May, 2015

Experiments are hard, e.g. NuMI at FNAL (MINERVA, MINOS, NOVA)

Think of neutrons or photons, but worse

- Need tertiary beam, no tagging, no simple monitoring
- Need very large, monolithic detector, e.g. 15 kT liquid scintillator

NuMI Flux Measurement

1.8

1.7

1.5 1.4

1.3

1.2

10

0.9

0

flux ratio weighted/unweighted

•Flux measurements are hard!

•MINERvA flux is simulated by GEANT4 and reweighted to match hadron production data from NA49. Recent MIPP publication will help a lot.

Coherent pion production

- Contributes to charged but not to neutral pions here.
- **GENIE** agrees with MINERvA $d\sigma/d\Omega^2$ (10⁻³⁹ cm²/GeV²/nucleon) NEUT 5.3.3 coherent data, but NEUT large. All π[±] W<1.8 ······ Coherent 6 ····· All minus coherent l[∓],v W, Z 0 2 3 ±.0 Q^2 (GeV²) $|t| = (q - p_{\pi})^2$ $+ \mathbf{A} \rightarrow \mu^{-} + \pi^{+} + \mathbf{A}$ $\overline{\nu}_{\mu}$ + A $\rightarrow \mu^+$ + π^- + A σ cm²/per nucleus (12/A)^{1/3} cm²/per nucleus (12/A)^{1/3} 25 NERVA <A>=12 SciBooNE <A> =12 BEBC <A> =20 K2K <A> =12 BEBC <A> =20 20 CHARM II <A> =21 CHARM II <A>=2 SKAT -A- -20 SKAT <A> =30 ArgoNeuT <A> =40 ° ArgoNeuT <A> =4 GENIE v2.6.2 15 GENIE v2.6.2 FUT V5.3 **NEUT v5.3.1** 6 10 10 Neutrino Energy (GeV) Neutrino Energy (GeV)