Deep Inelastic Scattering Part 2

Dave Gaskell Jefferson Lab

CTEQ 2015 Summer School July 8-9, 2015

Outline

Day 1:

- 1. Introduction to DIS and the Quark Parton Model
- 2. Formalism

→Unpolarized DIS
→Polarized DIS

3. Results and examples

Day 2:

- 1. Nuclear Effects in DIS
- 2. Beyond inclusive scattering
 → Semi-inclusive reactions (SIDIS)

$$\begin{array}{c} \frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4} \bigg[W_2(v,Q^2) \cos^2 \frac{\theta}{2} + 2W_1(v,Q^2) \sin^2 \frac{\theta}{2} \bigg] \\ \\ \frac{Large \ Q^2}{MW_1(v,Q^2) \rightarrow F_1(x)} \\ vW_2(v,Q^2) \rightarrow F_2(x) \\ x = \frac{Q^2}{2Mv} \end{array} \qquad \begin{array}{c} \underset{k'}{\text{lepton}} \\ \underset{k'}{\text{lepton$$

 F_2 interpreted in the **quark-parton model** as the charge-weighted sum over quark distributions:

$$F_2(x) = \sum_i e_i^2 x q_i(x)$$

Nuclear Effects in DIS

Typical nuclear binding energies \rightarrow MeV while DIS scales \rightarrow GeV

(super) Naïve expectation:

$$F_2^A(x) = ZF_2^p(x) + (A - Z)F_2^n(x)$$

More sophisticated approach includes effects from Fermi motion

$$F_2^A(x) = \sum_i \int_x^{M_A/m_N} dy f_i(y) F_2^N(x/y)$$

Quark distributions in nuclei were not expected to be significantly different (below x=0.6)

$$F_2^{Fe} / \left(ZF_2^p + (A - Z)F_2^n \right)$$

Figure from Bickerstaff and Thomas, J. Phys. G 15, 1523 (1989) Calculation: Bodek and Ritchie PRD 23, 1070 (1981)

Discovery of the EMC Effect

- First published measurement of nuclear dependence of *F*₂ by the European Muon Collaboration in 1983
- Observed 2 mysterious effects
 - − Significant
 enhancement at small x
 → Nuclear Pions! (no)
 - Depletion at large x →
 the "EMC Effect"
- Enhancement at x<0.1 later went away

Aubert et al, Phys. Lett. B123, 275 (1983)

Confirmation of the Effect

SLAC re-analysis of old solid target data used for measurements of cryotarget wall backgrounds

→Effect for x>0.3confirmed →No large excess at very low x

Bodek et al, PRL 50, 1431 (1983) and PRL 51, 534 (1983)

Subsequent Measurements

A program of dedicated measurements quickly followed

The resulting data is remarkably consistent over a large range of beam energies and measurement techniques

Why is the EMC Effect Important?

- Neutron structure functions
 - Almost all the information we have on neutron structure functions comes from deuterium data
 - Nuclear effects in deuterium relevant for extraction of neutron information directly impacts PDFS
- Neutrino experiments
 - Neutrino experiments need nuclear targets
 - Extraction of information for nucleons requires understanding nuclear effects
- Understanding QCD
 - Understanding the structure of the nucleon is obviously a key goal
 - Understanding the force between nucleons and how nuclei are held together also crucial
 - Why do "effective theories" work so well? At what point do quarks and gluons become relevant?

Nuclear dependence of structure functions

Experimentally, we measure cross sections (and the ratios of cross sections)

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \left[F_2(v,Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{Mv} F_1(v,Q^2) \sin^2 \frac{\theta}{2} \right] \qquad F_2(x) = \sum_i e_i^2 x q_i(x)$$

$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_2}{2xF_1} \left(1 + 4\frac{M^2 x^2}{Q^2} \right) - 1 \qquad \epsilon = \left[1 + 2\left(1 + \frac{Q^2}{4M^2 x^2} \right) \tan^2 \frac{\theta}{2} \right]^{-1}$$

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A (1 + \epsilon R_A)(1 + R_D)}{F_2^D (1 + R_A)(1 + \epsilon R_D)} \xrightarrow{\text{In the limit } R_A = R_D \text{ or } \epsilon = 1} \sigma_A / \sigma_D = F_2^A / F_2^D$$

Experiments almost always display cross section ratios, σ_A/σ_D \rightarrow Often these ratios are labeled or called F_2^A/F_2^D

→ Sometimes there is an additional uncertainty estimated to account for the $\sigma \rightarrow F_2$ translation. Sometimes there is not.

Properties of the EMC Effect

x Dependence

x Dependence

Jefferson Lab

Properties of the EMC Effect

Global properties of the EMC effect

Q² Dependence of the EMC Effect

(*) Q² Dependence of Sn/C

NMC measured non-zero Q^2 dependence in Sn/C ratio at small x

→ This result is in some tension with other NMC C/D and HERMES Kr/D results

Arneodo et al, Nucl. Phys. B 481, 23 (1996)

Q² Dependence at Large x

JLab Results from Hall C

Small angle, low $Q^2 \rightarrow$ clear scaling violations for x > 0.7, but surprisingly good at lower x

Scaling at Large x

JLab Results from Hall C

JLab data from Hall C → C/D ratio constant even at large x for W<2 GeV

- → The nuclear wave function smears the cross section enough to mimic "local duality"
- → Need to avoid the Delta resonance

X

Quark-Hadron Duality in Nuclei

- Free nucleon
 - average over resonance region =DIS scaling limit
- Bound nucleon
 - Fermi motion does the averaging for us
 - Resonances much less prominent in nuclear structure functions
- Nuclear structure functions appear to "scale" to lower Q² than their free nucleon counterparts with no explicit resonance averaging

J. Arrington, et al., PRC73:035205 (2006)

More detailed look at scaling

C/D ratios at fixed x are Q² independent for

 W^2 >2 GeV² and Q²>3 GeV²

JLab 6 GeV EMC data scale up to *x*=0.85

Properties of the EMC Effect

Global properties of the EMC effect

- 1. Universal x-dependence
- 2. Little Q^2 dependence
- 3. EMC effect increases with *A*
- → Anti-shadowing region shows little nuclear dependence

A-Dependence of EMC Effect

NMC: Arneodo et al, Nucl. Phys. B 481, 3 (1996)

A-Dependence of EMC Effect

<*r*²>=RMS electron scattering radius

SLAC E139: Gomez et al, PRD 49, 4348 (1992)

JLab E03103

E03103 in Hall C at Jefferson Lab ran Fall 2004

- \rightarrow Measured EMC ratios for light nuclei (³He, ⁴He, Be, and C)
- \rightarrow Results consistent with previous world data
- → Examined nuclear dependence a la E139

New definition of "size" of the EMC effect \rightarrow Slope of line fit from x=0.35 to 0.7

Definition assumes shape of the EMC effect is universal for nuclei

→Data *consistent* with this assumption

→ Normalization errors mean
 we can only confirm this at
 1-1.5% level

EMC Effect and Local Nuclear Density

⁹Be has low average density \rightarrow Large component of structure is $2\alpha+n$

 \rightarrow Most nucleons in tight, α -like configurations

EMC effect driven by *local* rather than *average* nuclear density

"Local density" is appealing in that it makes sense intuitively – can we make this more quantitative?

Local Density → Short Range Correlations

What drives high "local" density in the nucleus?

More complex calculations start from realistic NN potentials

Tensor interaction and short range repulsive core lead to high momentum tail in nuclear wave function → correlated nucleons

Measuring Short Range Correlations

To measure the (relative) probability of finding a correlated pair, ratios of heavy to light nuclei are taken at $x>1 \rightarrow QE$ scattering

If high momentum nucleons in nuclei come from correlated pairs, ratio of A/D should show a plateau (assumes FSIs cancel, etc.)

EMC Effect and SRC

Weinstein *et al* first observed linear correlation between size of EMC effect and Short Range Correlation "plateau"

Correlation <u>strengthened</u> with addition of Beryllium data

This result provides a *quantitative* test of level of correlation between the two effects

Origin of the EMC Effect

- Observation of correlation between size of EMC effect and SRCs interesting – but still does not explain the origin of the EMC effect
- Seems odd that an effect observed in QE scattering perhaps has common origin with modification of quark distributions
- Nonetheless, this correlation can be used to glean information about nucleon structure

EMC Effect in Deuteron from SRCs

EMC Effect in Deuterium

Griffioen et al, arXiv:1506.00871 [hep-ph]

Future of the EMC Effect

- A key question moving forward is exploration of the role of SRCs in the EMC effect
- New observables may be needed to gain further insight
 - Flavor dependence of the EMC effect (valence and sea quarks)
 - EMC effect in polarized quark distributions?
- Quark-meson inspired coupling models of the EMC effect seem to bridge the gap between quark and nucleon degrees of freedom

– These models do not include or give rise to SRCs

Semi-inclusive DIS

SIDIS \rightarrow production of one or more hadrons in DIS reaction

Simple picture:

1. Electron scatters from quark in nucleon

2. Quark is kicked out \rightarrow subsequently hadronizes, ending up in bound state

In this simple picture, SIDIS can be used to "tag" the flavor of the struck quark in DIS process

$$d\sigma^h \propto \sum f^{H \to q}(x) \mathrm{d}\sigma_q(y) D^{q \to h}(z)$$

Fragmentation function

Semi-inclusive DIS

In principle SIDIS can also be used to gain information about spatial distributions of quarks in nucleons

→ This requires measurements/ observation of transverse degrees of freedom

SIDIS Kinematics

Useful kinematics related to outgoing hadron:

$$z = \frac{q \cdot p}{q \cdot P} = \frac{E_h}{\nu}$$
 Fraction of virtual photon energy transferred to hadron

$$p_{\parallel} = \frac{p \cdot q}{|q|} \qquad p_T = (p^2 - p_{\parallel}^2)^{\frac{1}{2}}$$

Components of hadron momentum relative to q

$$\cos \phi = \frac{(-\vec{q} \times \vec{k}) \cdot (-\vec{q} \times \vec{p_h})}{|\vec{q} \times \vec{k}| |\vec{q} \times \vec{p_h}|}$$

Azimuthal angle between electron scattering plane and hadron reaction plane

SIDIS Cross Section

General form of unpolarized cross section:

$$\frac{d\sigma}{dxdydzdp_T^2d\phi} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left[F_T + \epsilon F_L + \sqrt{2\epsilon(1+\epsilon)}\cos\phi F_{LT} + \epsilon\cos 2\phi F_{TT} \right]$$

Integrate over p_T and ϕ , cross section can be expressed in terms of quark-parton model:

$$\frac{d\sigma}{dxdydz} = \sigma_{DIS} \frac{d\sigma}{dz} \qquad \text{where} \\ \frac{1}{\sigma_{DIS}} \frac{d\sigma}{dz} = \frac{\sum_{f} e_q^2 q_f(x, Q^2) D_f^h(z)}{\sum_{f} e_f^2 q_f(x, Q^2)}$$

Fragmentation Functions

$D_q^h(z,Q^2) \rightarrow$ probability to form hadron (h) after quark of flavor (q) is struck

In Quark-Parton Model, fragmentation functions Q^2 independent \rightarrow In reality, evolve with Q^2 like quark PDFs

Fragmentation functions can be measured in e+e- reactions \rightarrow no complication due to hadron structure \rightarrow Only average FF accessible – need other information for flavor dependence

For pion production, charge and isospin symmetry reduce number of FF's needed

$$D^{+} = D_{u}^{\pi^{+}} = D_{d}^{\pi^{-}} = D_{\bar{u}}^{\pi^{-}} = D_{\bar{d}}^{\pi^{+}}$$
$$D^{-} = D_{u}^{\pi^{-}} = D_{d}^{\pi^{+}} = D_{\bar{u}}^{\pi^{+}} = D_{\bar{u}}^{\pi^{-}}$$

SIDIS Examples

Light quark sea flavor asymmetry can be extracted using semiinclusive pion production

- → Assumes leading order factorization
- → Do not need knowledge of absolute fragmentation functions, but do need FF ratio: D⁻/D⁺

D+ = favored fragmentation function ($u \rightarrow \pi$ +) D- = unfavored fragmentation function ($u \rightarrow \pi$ -)

SIDIS Examples

SIDIS Examples

Polarized quark distributions $\frac{d\sigma^h_{\frac{1}{2}(\frac{3}{2})}}{dx dQ^2 dz} \propto \sum_q e_q^2 q^{+(-)} D_q^h(z,Q^2)$ $\Delta q(x) = q^+(x) - q^-(x)$

HERMES used a "purity" analysis so they wouldn't have to measure the absolute magnitude of fragmentation function

HERMES, Phys.Rev. D71 (2005) 012003

SIDIS with Transverse Degrees of Freedom

In the more general case, allowing for target and beam polarizations, the cross section is a bit more complicated

- → Measurement of the transverse momentum of the hadron also allows for access to information regarding the initial transverse momentum of the quark
- → Transverse momentum dependent distributions – TMDs
- → Azimuthal asymmetries key to accessing TMDs

Example: Transversely polarized target, unpolarized beam

$$\frac{d\sigma}{dxdyd\phi_S dzd\phi_h dp_{h\perp}^2} = \sigma_{unpol} + \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} |\mathbf{S}_{\perp}| [\sin\left(\phi_h - \phi_S\right) \left(F_{UT,T}^{\sin\left(\phi_h - \phi_S\right)} + \epsilon F_{UT,L}^{\sin\left(\phi_h - \phi_S\right)}\right) + \epsilon \sin\left(\phi_h - \phi_S\right) F_{UT}^{\sin\left(\phi_h - \phi_S\right)} + \epsilon \sin\left(\phi_h - \phi_S\right) F_{UT}^{\sin\left(\phi_h - \phi_S\right)} \sqrt{2\epsilon(1+\epsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\epsilon(1+\epsilon)} \sin\left(2\phi_h - \phi_S\right) F_{UT}^{\sin\left(2\phi_h - \phi_S\right)}]$$

TMDs

In the inclusive/forward hadron production case, we sample onedimensional parton distribution functions

TMDs allows us to explore the distributions of partons in the transverse direction

$$q(x) \to q(x, k_T)$$

Transverse momentum also generated during fragmentation

$$D(z) \to D(z, p_T)$$

TMDs

$$q(x) \to q(x, k_T) \qquad D(z) \to D(z, p_T)$$

Probability of producing hadron with transverse momentum P_T comes from a convolution of k_T dependent parton distribution and p_T dependent fragmentation function

 $P_T = p_T + zk_T + O(k_T^2/Q^2)$

SIDIS and TMDs

D_1	Unpolarized fragmentation function	$F_{UU} \to f_1 D_1$	Unpolarized TMD
		$F_{UU}^{\cos\left(2\phi_{h}\right)} \to h_{1}^{\perp}H_{1}^{\perp}$	Boer-Mulders TMD
H_1^{\perp}	Collins fragmentation function	$F_{UL}^{\sin\left(2\phi_{h}\right)} \to h_{1L}^{\perp}H_{1}^{\perp}$	Worm gear TMD
		$F_{LL} \to g_{1L} D_1$	HelicityTMD
Beam	polarization	$F_{UT,T}^{\sin(\phi_h - \phi_S)} \to f_{1T}^{\perp} D_1$	Sivers TMD
Tora	et polarization	$F_{UT}^{\sin\left(\phi_{h}+\phi_{S}\right)} \to h_{1}H_{1}^{\perp}$	Transversity TMD
Targe		$F_{UT}^{\sin\left(3\phi_{h}-\phi_{S}\right)} \to h_{1T}^{\perp}H_{1}^{\perp}$	Pretzelosity TMD
Jefferso	n Lab	$F_{LT}^{\cos\left(\phi_{h}-\phi_{S}\right)} \to g_{1T}D_{1}$	Worm gear TMD

Distribution Functions

nucleon

Diagonal elements = usual PDFs

Off-diagonal elements = transverse momentum distributions, require non-zero angular momentum

$$f_{1T}^{\perp} \rightarrow$$
 Sivers function, describes unpolarized quark in trans. pol. nucleon

 $h_1^{\perp}, h_{1L}^{\perp}, h_{1T}^{\perp} \rightarrow$ Boer-Mulders functions describe transversely polarized quarks in un/long./trans./polarized nucleon

Unpolarized SIDIS

Hall C @ JLAB: E00-108

Measured P_T dependence of unpolarized SIDIS cross sections for:

 π^+ and π^- from H and D

Model P₇ dependence of SIDIS

Gaussian distributions for P_T dependence, no sea quarks, and leading order in (k_T/q)

$$\begin{split} \sigma_p^{\pi+} &= C \Big[4c_1(P_t) e^{-b_u^+ P_t^2} + (d/u) \Big(D^-/D^+ \Big) c_2(P_t) e^{-b_d^- P_t^2} \Big], \\ \sigma_p^{\pi-} &= C \Big[4 \Big(D^-/D^+ \Big) c_3(P_t) e^{-b_u^- P_t^2} + (d/u) c_4(P_t) e^{-b_d^+ P_t^2} \Big], \\ \sigma_n^{\pi+} &= C \Big[4 (d/u) c_4(P_t) e^{-b_d^+ P_t^2} + \Big(D^-/D^+ \Big) c_3(P_t) e^{-b_u^- P_t^2} \Big], \\ \sigma_n^{\pi-} &= C \Big[4 (d/u) \Big(D^-/D^+ \Big) c_2(P_t) e^{-b_d^- P_t^2} + c_1(P_t) e^{-b_u^+ P_t^2} \Big], \end{split}$$

Inverse of total width for each combination of quark flavor and fragmentation function given by: $b_u^{\pm} = \left(z^2 \mu_u^2 + \mu_{\pm}^2 \right)^{-1}$

Simple model, with several assumptions:

 \rightarrow factorization valid

 \rightarrow fragmentation functions do not depend on quark flavor

 \rightarrow transverse momentum widths of quark and fragmentation

functions are Gaussian and can be added in quadrature

 \rightarrow more ...

Unpolarized SIDIS

$A_1 P_T$ -Dependence in SIDIS

In perturbative limit predicted to be constant

 π + A_{LL} can be explained in terms of broader k_T distributions for f₁ compared to g₁

multidimensional binning to study k_{T} -dependence for fixed x

Proton Single-Spin Asymmetries with CLAS

Transverse Target Asymmetries

Collins asymmetry
$$\sin(\phi_h + \phi_S) \rightarrow h_1 H_1^{\perp}$$

Provides access to "transversity" distribution \rightarrow linked to tensor charge of the proton

 $\delta q = \int_{0}^{1} h_{1}^{q}(x)$ Fundamental property of nucleon,

Sivers asymmetry
$$\sin\left(\phi_{h}-\phi_{S}
ight)
ightarrow f_{1T}^{\perp}D_{1}$$

Quark distributions in a transversely polarized nucleon

Transverse Target asymmetries from COMPASS

Transverse Target asymmetries from COMPASS and HERMES

PLB 744 (2015) 250

SIDIS Summary

- Semi-inclusive DIS a powerful tool for exploring how quarks are distributed in the nucleon
 - Flavor tagging for polarized and unpolarized PDFs
 - TMDs allow exploration of transverse structure → link to orbital angular momentum
- Most SIDIS data has been acquired at fixed target facilities → HERMES, JLab, COMPASS
 - JLab has a large SIDIS program planned for Halls A,
 B, and C as part of 12 GeV Upgrade
 - A future EIC would provide a huge amount of data in the "sea-quark" regime

DIS Cross Section

Reminder: Inclusive case

$$\frac{d\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^2} \left[y^2 x F_1(x,Q^2) + (1-y)F_2(x,Q^2) \right]$$

Quark parton-model

$$F_{2} = 2xF_{1} \qquad F_{2}(x) = x\sum_{f} e_{f}^{2}q_{f}(x)$$
$$\frac{d\sigma}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}}[1 + (1 - y)^{2}]\sum_{f} e_{f}^{2}q_{f}(x)$$

$$\frac{d\sigma}{dxdy} = \frac{2\pi\alpha^2 xs}{Q^4} [1 + (1 - y)^2] \sum_f e_f^2 q_f(x)$$

CJ12 PDFs

Nuclear effects in deuteron lead to significant uncertainties in quark PDFs at large *x*

 \rightarrow This has been studied in some depth by the CTEQ-JLAB collaboration

J. F. Owens, A. Accardi and W. Melnitchouk, Phys. Rev. D 87, 094012 (2013)

