Precision Monte Carlo

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

CTEQ School, Pittsburgh, 2015

イロト イヨト イヨト イヨト

INTRODUCTION

F. Krauss Precision Monte Carlo

Improving event generators

The inner working of event generators ... simulation: divide et impera

• hard process: fixed order perturbation theory

traditionally: Born-approximation

- bremsstrahlung: resummed perturbation theory
- hadronisation: phenomenological models
- hadron decays: effective theories, data
- "underlying event": phenomenological models

... and possible improvements possible strategies:

- improving the phenomenological models:
 - "tuning" (fitting parameters to data)
 - replacing by better models, based on more physics

(my hot candidate: "minimum bias" and "underlying event" simulation)

- improving the perturbative description:
 - inclusion of higher order exact matrix elements and correct connection to resummation in the parton shower:

"NLO-Matching" & "Multijet-Merging"

• systematic improvement of the parton shower: next-to leading (or higher) logs & colours

Example: QCD precision in Higgs physics

- after discovery: time for precision studies of the newly found boson is it the SM Higgs boson or something else? relevant: spin/parity, couplings to other particles
- Higgs signal suffers from different backgrounds, depending on production and decay channel considered in the analysis
- decomposing in bins of different jet multiplicities yields
 - different signal composition (e.g. WBF vs. ggF)
 - different backgrounds (most notably: $t\bar{t}$ in WW final states)
- to this end: must understand jet production in big detail name of the game: uncertainties and their control

despite far-reaching claims: analytic resummation and fixed-order calculations will not be sufficient

・ロト ・回ト ・ヨト

Introduction Ingredients ME corrections Matching Multijet merging Summ

INGREDIENTS

F. Krauss Precision Monte Carlo Introduction Ingredients ME corrections Matching Multijet merging Summary

Hard process

Cross sections at the LHC: Born approximation

$$\mathrm{d}\sigma_{ab\to N} = \int_{0}^{1} \mathrm{d}x_{a} \mathrm{d}x_{b} f_{a}(x_{a}, \mu_{F}) f_{b}(x_{a}, \mu_{F}) \int_{\mathrm{cuts}} \mathrm{d}\Phi_{N} \frac{1}{2\hat{s}} |\mathcal{M}_{\rho_{a}\rho_{b}\to N}(\Phi_{N}; \mu_{F}, \mu_{R})|^{2}$$

- parton densities $f_a(x, \mu_F)$ (PDFs)
- phase space Φ_N for *N*-particle final states
- incoming current $1/(2\hat{s})$
- squared matrix element $\mathcal{M}_{p_a p_b
 ightarrow N}$

(summed/averaged over polarisations)

イロト イヨト イヨト イヨト

- renormalisation and factorisation scales μ_R and μ_F
- complexity demands numerical methods for large N

Including higher order corrections

- obtained from adding diagrams with additional: loops (virtual corrections) or legs (real corrections)
 Image: Correction (Corrections)
 Image: Correction (Correctio
- effect: reducing the dependence on $\mu_R \& \mu_F$ NLO allows for meaningful estimate of uncertainties
- additional difficulties when going NLO:

ultraviolet divergences in virtual correction infrared divergences in real and virtual correction

enforce

UV regularisation & renormalisation IR regularisation & cancellation

(Kinoshita-Lee-Nauenberg-Theorem)

Introduction Ingredients ME corrections Matching Multijet merging Summary

• general structure of NLO calculation for *N*-body production

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_{\mathcal{B}}\mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{B}}\mathcal{V}_{\mathcal{N}}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{R}}\mathcal{R}_{\mathcal{N}}(\Phi_{\mathcal{R}}) \\ &= \mathrm{d}\Phi_{\mathcal{B}}\,\left(\mathcal{B}_{\mathcal{N}} + \mathcal{V}_{\mathcal{N}} + \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}\right) + \mathrm{d}\Phi_{\mathcal{R}}\,\left(\mathcal{R}_{\mathcal{N}} - \mathcal{S}_{\mathcal{N}}\right) \end{split}$$

• phase space factorisation assumed here $(\Phi_{\mathcal{R}}=\Phi_{\mathcal{B}}\otimes\Phi_1)$

$$\int \mathrm{d} \Phi_1 \mathcal{S}_{\mathcal{N}} (\Phi_{\mathcal{B}} \otimes \Phi_1) \, = \, \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})} (\Phi_{\mathcal{B}})$$

process independent subtraction kernels

$$egin{aligned} \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}}\otimes\Phi_1) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \,\,\otimes\,\,\mathcal{S}_1(\Phi_{\mathcal{B}}\otimes\Phi_1) \ \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}}\otimes\Phi_1) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \,\,\otimes\,\,\mathcal{I}_1^{(\mathcal{S})}(\Phi_{\mathcal{B}}) \end{aligned}$$

with universal $\mathcal{S}_1(\Phi_{\mathcal{B}}\otimes \Phi_1)$ and $\mathcal{I}_1^{(\mathcal{S})}(\Phi_{\mathcal{B}})$

• in Catani-Seymour invertible phase space mapping

$$\Phi_{\mathcal{R}} \longleftrightarrow \Phi_{\mathcal{B}} \otimes \Phi_1$$

Precision Monte Carlo

F. Krauss

Hard process

- common lore: NLO calculations reduce scale uncertainties
- this is, in general, true. however:

unphysical scale choices will yield unphysical results

so maybe we have to be a bit smarter than just running NLO code

F. Krauss	
Precision Monte Carlo	

<ロト < 国ト < 国ト < 国

Availability of exact calculations (hadron colliders)

- fixed order matrix elements ("parton level") are exact to a given perturbative order. (and often quite a pain!)
- important to understand limitations: only tree-level and one-loop level fully automated, beyond: prototyping

Parton showers, compact notation

Sudakov form factor (no-decay probability)

$$\Delta_{ij,k}^{(\mathcal{K})}(t,t_0) = \exp\left[-\int_{t_0}^t \frac{\mathrm{d}t}{t} \frac{\alpha_s}{2\pi} \int \mathrm{d}z \frac{\mathrm{d}\phi}{2\pi} - \underbrace{\mathcal{K}_{ij,k}(t,z,\phi)}_{\text{splitting kernel for}}\right]$$

• evolution parameter t defined by kinematics

generalised angle (HERWIG ++) or transverse momentum (PYTHIA, SHERPA)

• will replace
$$\frac{\mathrm{d}t}{t}\mathrm{d}z\frac{\mathrm{d}\phi}{2\pi}\longrightarrow\mathrm{d}\Phi_1$$

• scale choice for strong coupling: $\alpha_{s}(k_{\perp}^{2})$

resums classes of higher logarithms

イロト イポト イヨト イヨト

• regularisation through cut-off t_0

- Introduction Ingredients ME corrections Matching Multijet merging Summary
 - "compound" splitting kernels K_n and Sudakov form factors Δ^(K)_n for emission off n-particle final state:

$$\mathcal{K}_{n}(\Phi_{1}) = \frac{\alpha_{\mathsf{s}}}{2\pi} \sum_{\mathsf{all} \{ij,k\}} \mathcal{K}_{ij,k}(\Phi_{ij,k}), \quad \Delta_{n}^{(\mathcal{K})}(t,t_{0}) = \exp\left[-\int_{t_{0}}^{t} \mathrm{d}\Phi_{1} \,\mathcal{K}_{n}(\Phi_{1})\right]$$

• consider first emission only off Born configuration

$$\mathrm{d}\sigma_{B} = \mathrm{d}\Phi_{N} \,\mathcal{B}_{N}(\Phi_{N})$$

$$\cdot \underbrace{\left\{ \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} \mathrm{d}\Phi_{1} \Big[\mathcal{K}_{N}(\Phi_{1}) \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t(\Phi_{1})) \Big] \right\}}_{\mathrm{integrates to unity} \longrightarrow \mathrm{``unitarity'' of parton shower}}$$

• further emissions by recursion with $Q^2 = t$ of previous emission

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Ingredients **ME corrections** Matching Multijet merging Summ

ME CORRECTIONS

F. Krauss Precision Monte Carlo Introduction Ingredients ME corrections Matching Multijet merging Summary

Matrix element corrections

- parton shower ignores interferences typically present in matrix elements
- pictorially

イロト イヨト イヨト

- form many processes $\mathcal{R}_N < \mathcal{B}_N imes \mathcal{K}_N$
- typical processes: q ar q' o V, $e^- e^+ o q ar q$, t o b W
- practical implementation: shower with usual algorithm, but reject first/hardest emissions with probability $\mathcal{P} = \mathcal{R}_N / (\mathcal{B}_N \times \mathcal{K}_N)$

• analyse first emission, given by

d

$$\sigma_{B} = \mathrm{d}\Phi_{N} \,\mathcal{B}_{N}(\Phi_{N})$$

$$\cdot \left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} \mathrm{d}\Phi_{1} \left[\frac{\mathcal{R}_{N}(\Phi_{N} \times \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t(\Phi_{1})) \right] \right\}$$

once more: integrates to unity \longrightarrow "unitarity" of parton shower

• radiation given by \mathcal{R}_N (correct at $\mathcal{O}(\alpha_s)$)

(but modified by logs of higher order in α_s from $\Delta_N^{(\mathcal{R}/\mathcal{B})}$)

- emission phase space constrained by μ_N
- also known as "soft ME correction" hard ME correction fills missing phase space
- used for "power shower":
 - $\mu_N \rightarrow E_{pp}$ and apply ME correction

Introduction Ingredients ME corrections Matching Multijet merging Summa

NLO MATCHING

(*ロト * @ ト * 注 * * 注 * のへで)

F. Krauss Precision Monte Carlo Introduction Ingredients ME corrections Matching Multijet merging Summary

NLO matching: Basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- adjust ("match") terms:
 - cross section at NLO accuracy & correct hardest emission in PS to exactly reproduce ME at order α_s (\mathcal{R} -part of the NLO calculation)

(this is relatively trivial)

• maintain (N)LL-accuracy of parton shower

(this is not so simple to see)

・ロト ・同ト ・ヨト ・ヨ

Basic idea

Introduction Ingredients ME corrections Matching Multijet merging Summary

PowHeg

• reminder: $\mathcal{K}_{ij,k}$ reproduces process-independent behaviour of $\mathcal{R}_N/\mathcal{B}_N$ in soft/collinear regions of phase space

$$\mathrm{d}\Phi_1 \frac{\mathcal{R}_N(\Phi_{N+1})}{\mathcal{B}_N(\Phi_N)} \xrightarrow{\mathrm{IR}} \mathrm{d}\Phi_1 \frac{\alpha_{\mathsf{s}}}{2\pi} \mathcal{K}_{ij,k}(\Phi_1)$$

• define modified Sudakov form factor (as in ME correction)

$$\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_N^2,t_0) = \exp\left[-\int_{t_0}^{\mu_N^2} \mathrm{d}\Phi_1 \, \frac{\mathcal{R}_N(\Phi_{N+1})}{\mathcal{B}_N(\Phi_N)}\right] \, ,$$

• assumes factorisation of phase space: $\Phi_{N+1} = \Phi_N \otimes \Phi_1$

 \bullet typically will adjust scale of $\alpha_{\rm s}$ to parton shower scale

・ロト ・部ト ・ヨト ・ヨト

Introduction Ingredients ME corrections	Matching	Multijet merging	
	000000000000000000000000000000000000000		
PowHeg			

- define local K-factors
- start from Born configuration Φ_N with NLO weight:

("local K-factor")

$$\begin{split} \mathrm{d}\sigma_{N}^{(\mathrm{NLO})} &= \mathrm{d}\Phi_{N}\,\bar{\mathcal{B}}(\Phi_{N}) \\ &= \mathrm{d}\Phi_{N}\left\{\mathcal{B}_{N}(\Phi_{N}) + \underbrace{\mathcal{V}_{N}(\Phi_{N}) + \mathcal{B}_{N}(\Phi_{N})\otimes \mathcal{S}}_{\tilde{\mathcal{V}}_{N}(\Phi_{N})} \right. \\ &+ \int \mathrm{d}\Phi_{1}\left[\mathcal{R}_{N}(\Phi_{N}\otimes\Phi_{1}) - \mathcal{B}_{N}(\Phi_{N})\otimes \mathrm{d}S(\Phi_{1})\right]\right\} \end{split}$$

- by construction: exactly reproduce cross section at NLO accuracy
- note: second term vanishes if $\mathcal{R}_N \equiv \mathcal{B}_N \otimes \mathrm{d}S$

(relevant for MC@NLO)

イロト イポト イヨト イヨト

		Matching	
		000000000000000000000000000000000000000	
PowHeg			

- analyse accuracy of radiation pattern
- generate emissions with $\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_N^2, t_0)$:

$$d\sigma_{N}^{(\text{NLO})} = d\Phi_{N} \,\bar{\mathcal{B}}(\Phi_{N}) \\ \times \underbrace{\left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \frac{\mathcal{R}_{N}(\Phi_{N} \otimes \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, k_{\perp}^{2}(\Phi_{1})) \right\}}$$

integrating to yield 1 - "unitarity of parton shower"

- radiation pattern like in ME correction
- pitfall, again: choice of upper scale μ_N^2
- apart from logs: which configurations enhanced by local K-factor

(K-factor for inclusive production of X adequate for X + jet at large p + ?)

(this is vanilla POWHEG!)

	Matching	
	000000000000000000000000000000000000000	

- large enhancement at high $p_{T,h}$
- can be traced back to large NLO correction
- ullet fortunately, NNLO correction is also large $\rightarrow \sim$ agreement

イロト イヨト イヨト イヨト

PowHeg

- improving POWHEG
- split real-emission ME as

$$\mathcal{R} = \mathcal{R}\left(\underbrace{\frac{h^2}{p_{\perp}^2 + h^2}}_{\mathcal{R}^{(S)}} + \underbrace{\frac{p_{\perp}^2}{p_{\perp}^2 + h^2}}_{\mathcal{R}^{(F)}}\right)$$

<ロ> <同> <同> <同> <同> <同

- can "tune" *h* to mimick NNLO or other (resummation) result
 - differential event rate up to first emission

$$d\sigma = d\Phi_B \bar{\mathcal{B}}^{(\mathrm{R}^{(\mathrm{S})})} \left[\Delta^{(\mathcal{R}^{(\mathrm{S})}/\mathcal{B})}(s, t_0) + \int_{t_0}^{s} \mathrm{d}\Phi_1 \frac{\mathcal{R}^{(\mathrm{S})}}{\mathcal{B}} \Delta^{(\mathcal{R}^{(\mathrm{S})}/\mathcal{B})}(s, k_{\perp}^2) \right] \\ + \mathrm{d}\Phi_R \mathcal{R}^{(F)}(\Phi_R)$$

MC@NLO

• MC@NLO paradigm: divide \mathcal{R}_N in soft ("S") and hard ("H") part:

$$\mathcal{R}_N = \mathcal{R}_N^{(S)} + \mathcal{R}_N^{(H)} = \mathcal{B}_N \otimes \mathrm{d}\mathcal{S}_1 + \mathcal{H}_N$$

• identify subtraction terms and shower kernels $\mathrm{d}\mathcal{S}_1\equiv\sum\limits_{\{ij,k\}}\mathcal{K}_{ij,k}$

(modify ${\cal K}$ in $1^{{\mbox{st}}}$ emission to account for colour)

$$d\sigma_{N} = d\Phi_{N} \underbrace{\tilde{\mathcal{B}}_{N}(\Phi_{N})}_{\mathcal{B}+\tilde{\mathcal{V}}} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{ij,k}(\Phi_{1}) \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, k_{\perp}^{2}) \right] \\ + d\Phi_{N+1} \mathcal{H}_{N}$$

• effect: only resummed parts modified with local K-factor

• phase space effects: shower vs. fixed order

- problem: impact of subtraction terms on local K-factor (filling of phase space by parton shower)
- studied in case of $gg \rightarrow H$ above
- proper filling of available phase space by parton shower paramount

(日) (同) (三) (三)

MC@NLO

MC@NLO for light jets: jet- p_{\perp}

MC@NLO

MC@NLO for light jets: dijet mass

F. Krauss Precision Monte Carlo

MC@NLO

MC@NLO for light jets: azimuthal decorrelations

F. Krauss

MC@NLO for light jets: R_{32} & forward energy flow

F. Krauss

Precision Monte Carlo

MC@NLO

MC@NLO for light jets: jet vetoes

F. Krauss Precision Monte Carlo

MULTIJET MERGING

(*ロト * @ ト * 注 * * 注 * のへで)

F. Krauss Precision Monte Carlo

Multijet merging: basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- combine ("merge") both: result: "towers" of MEs with increasing number of jets evolved with PS
 - multijet cross sections at Born accuracy
 - maintain (N)LL accuracy of parton shower

・ロト ・ 聞 ト ・ 臣 ト ・ 臣

Basic idea

• separate regions of jet production and jet evolution with jet measure Q_J

("truncated showering" if not identical with evolution parameter)

- matrix elements populate hard regime
- parton showers populate soft domain

(日) (同) (三) (

Why it works: jet rates with the parton shower

- consider jet production in e⁺e⁻ → hadrons
 Durham jet definition: relative transverse momentum k_⊥ > Q_J
- fixed order: one factor α_S and up to $\log^2 \frac{E_{c.m.}}{\Omega_L}$ per jet
- use Sudakov form factor for resummation & replace approximate fixed order by exact expression:

$$\mathcal{R}_{2}(Q_{J}) = \left[\Delta_{q}(E_{c.m.}^{2}, Q_{J}^{2})\right]^{2}$$

$$\mathcal{R}_{3}(Q_{J}) = 2\Delta_{q}(E_{c.m.}^{2}, Q_{J}^{2}) \int_{Q_{J}^{2}}^{E_{c.m.}^{2}} \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \left[\frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} \mathrm{d}z \mathcal{K}_{q}(k_{\perp}^{2}, z) \right]$$

$$\times \Delta_{q}(E_{c.m.}^{2}, k_{\perp}^{2}) \Delta_{q}(k_{\perp}^{2}, Q_{J}^{2}) \Delta_{g}(k_{\perp}^{2}, Q_{J}^{2})$$

Basic idea

Introduction Ingredients ME corrections Matching Multijet merging Summary

Multijet merging at LO

Multijet merging at LO

expression for first emission

$$d\sigma = d\Phi_N \mathcal{B}_N \left[\Delta_N^{(\mathcal{K})}(\mu_N^2, t_0) + \int_{t_0}^{\mu_N^2} d\Phi_1 \mathcal{K}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_N) \right]$$
$$+ d\Phi_{N+1} \mathcal{B}_{N+1} \Delta_N^{(\mathcal{K})}(\mu_{N+1}^2, t_{N+1}) \Theta(Q_{N+1} - Q_J)$$

• note: N + 1-contribution includes also N + 2, N + 3, ...

(no Sudakov suppression below t_{n+1} , see further slides for iterated expression)

- potential occurrence of different shower start scales: $\mu_{N,N+1,...}$
- "unitarity violation" in square bracket: $\mathcal{B}_N \mathcal{K}_N \longrightarrow \mathcal{B}_{N+1}$

(cured with UMEPS formalism, L. Lonnblad & S. Prestel, JHEP 1302 (2013) 094 &

S. Platzer, arXiv:1211.5467 [hep-ph] & arXiv:1307.0774 [hep-ph])

$$d\sigma = \sum_{n=N}^{n_{max}-1} \left\{ d\Phi_n \mathcal{B}_n \left[\prod_{j=N}^{n-1} \Theta(Q_{j+1} - Q_j) \right] \left[\prod_{j=N}^{n-1} \Delta_j^{(\mathcal{K})}(t_j, t_{j+1}) \right] \right\} \\ \times \left[\Delta_n^{(\mathcal{K})}(t_n, t_0) + \int_{t_0}^{t_n} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_n, t_{n+1}) \Theta(Q_j - Q_{n+1}) \right] \\ + d\Phi_{n_{max}} \mathcal{B}_{n_{max}} \left[\prod_{j=N}^{n_{max}-1} \Theta(Q_{j+1} - Q_j) \right] \left[\prod_{j=N}^{n_{max}-1} \Delta_j^{(\mathcal{K})}(t_j, t_{j+1}) \right] \\ \times \left[\Delta_{n_{max}}^{(\mathcal{K})}(t_n, t_0) + \int_{t_0}^{t_n} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_n, t_{n+1}) \Theta(Q_j - Q_{n+1}) \right] \right] \\ + d\Phi_{n_{max}} \mathcal{B}_{n_{max}} \left[\prod_{j=N}^{n_{max}-1} \Theta(Q_{j+1} - Q_j) \right] \left[\prod_{j=N}^{n_{max}-1} \Delta_j^{(\mathcal{K})}(t_j, t_{j+1}) \right] \\ \times \left[\Delta_{n_{max}}^{(\mathcal{K})}(t_{n_{max}}, t_0) + \int_{t_0}^{t_{n_{max}}} d\Phi_1 \mathcal{K}_{n_{max}} \Delta_{n_{max}}^{(\mathcal{K})}(t_{n_{max}}, t_{n_{max}} + 1) \right] \right]$$

F. Krauss

Precision Monte Carlo
Di-photons @ ATLAS: $m_{\gamma\gamma}$, $p_{\perp,\gamma\gamma}$, and $\Delta \phi_{\gamma\gamma}$ in showers

(arXiv:1211.1913 [hep-ex])

IPPP

Aside: Comparison with higher order calculations

A step towards multijet-merging at NLO: MENLOPS

- combine matching for lowest multiplicity with multijet merging
- interpolating local K-factor for reweighting hard emissions

$$k_{N}(\Phi_{N+1}) = \frac{\tilde{\mathcal{B}}_{N}}{\mathcal{B}_{N}} \left(1 - \frac{\mathcal{H}_{N}}{\mathcal{B}_{N+1}}\right) + \frac{\mathcal{H}_{N}}{\mathcal{B}_{N+1}} \longrightarrow \begin{cases} \tilde{\mathcal{B}}_{N}/\mathcal{B}_{N} & \text{for soft emission} \\ 1 & \text{for hard emission} \end{cases}$$

$$d\sigma = d\Phi_{N} \tilde{\mathcal{B}}_{N} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{N} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Theta(Q_{J} - Q_{N+1}) \right] \\ + d\Phi_{N+1} \mathcal{H}_{N} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Theta(Q_{J} - Q_{N+1}) \\ + d\Phi_{N+1} \frac{k_{N} \mathcal{B}_{N+1} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Theta(Q_{N+1} - Q_{J})}{k_{N}}$$

MENLOPS

Transverse momentum of W & Z boson

ATLAS, arXiv:1108.6308, arXiv:1107.2381

Z+jets: inclusive quantities

ATLAS, arXiv:1111.2690

- 4 日 2 4 周 2 4 画 2 4 画 2 9 9 9 9

Z+jets: jet transverse momenta

ATLAS, arXiv:1111.2690

イロト イヨト イヨト イヨト

F. Krauss Precision Monte Carlo

Z+jets: jet transverse momenta

ATLAS, arXiv:1111.2690

F. Krauss Precision Monte Carlo

Z+jets: correlation of leading jets

ATLAS, arXiv:1111.2690

F. Krauss Precision Monte Carlo

MENLOPS

Z+jets: $\Delta \phi_{Zj}$ in unboosted sample

CMS, arXiv:1301.1646

F. Krauss

Precision Monte Carlo

Summary

MENLOPS

Z+jets: $\Delta \phi_{Zj}$ in boosted sample

CMS, arXiv:1301.1646

|▲□▶▲@▶▲≧▶▲≧▶ == のへで

F. Krauss

Precision Monte Carlo

Multijet-merging at NLO: MEPS@NLO

- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- combine them into one sample, remove overlap/double-counting

maintain NLO and (N)LL accuracy of ME and PS

 this effectively translates into a merging of MC@NLO simulations and can be further supplemented with LO simulations for even higher final state multiplicities

イロト イポト イヨト イヨト

Multijet merging at NLO

First emission(s), once more

$$d\sigma = d\Phi_N \tilde{\mathcal{B}}_N \left[\Delta_N^{(\mathcal{K})}(\mu_N^2, t_0) + \int_{t_0}^{\mu_N^2} d\Phi_1 \mathcal{K}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_{N+1}) \right] \\ + d\Phi_{N+1} \mathcal{H}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_{N+1})$$

$$+d\Phi_{N+1}\,\tilde{\mathcal{B}}_{N+1}\left(1+\frac{\mathcal{B}_{N+1}}{\tilde{\mathcal{B}}_{N+1}}\int_{t_{N+1}}^{\mu_{N}^{2}}d\Phi_{1}\,\mathcal{K}_{N}\right)\Theta(Q_{N+1}-Q_{J})$$

$$\cdot\left[\Delta_{N+1}^{(\mathcal{K})}(t_{N+1},t_{0})+\int_{t_{0}}^{t_{N+1}}d\Phi_{1}\,\mathcal{K}_{N+1}\Delta_{N+1}^{(\mathcal{K})}(t_{N+1},t_{N+2})\right]$$

$$+d\Phi_{N+2}\,\mathcal{H}_{N+1}\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2},t_{N+1})\Delta_{N+1}^{(\mathcal{K})}(t_{N+1},t_{N+2})\Theta(Q_{N+1}-Q_{J})+\dots$$

troduction Ingredients ME corrections Mat

Matching Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

 first emission by MC@NLO

p_{\perp}^{H} in MEPs@NLO

 first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 … の Q @

Matching Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

Transverse momentum of the Higgs boson

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

Transverse momentum of the Higgs boson

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

<ロト < 国 > < 国 > < 国 > < 国

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

Transverse momentum of the Higgs boson

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

<ロト < 国ト < 国ト < 国

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

<ロト < 国ト < 国ト < 国

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

<ロト < 国ト < 国ト < 国

• sum all contributions

F. Krauss

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

Transverse momentum of the Higgs boson

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

Multijet merging at NLO

MEPs@NLO: example results for $e^-e^+ \rightarrow$ hadrons

Multijet merging at NLO

MEPs@NLO: example results for $e^-e^+ \rightarrow$ hadrons

→ ∃ →

Multijet merging at NLO

Example: MEPs@NLO for W+jets

(up to two jets @ NLO, from BLACKHAT, see arXiv: 1207.5031 [hep-ex])

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ○ ○ ○

F. Krauss

Multijet merging at NLO

F. Krauss

э

< 口 > < 凸

< 3

Results for Higgs boson production through gluon fusion

- parton-shower level, Higgs boson does not decay
- setup & cuts:
 - $\begin{array}{ll} {\rm jets:} & {\rm anti-kt,} \ p_{\perp} \geq 20 \ {\rm GeV}, \ R=0.4, \ |\eta| \leq 4.5 \\ {\rm dijet\ cuts:} & {\rm at\ least\ 2\ jets\ with\ } p_{\perp} \geq 25 \ {\rm GeV} \\ {\rm WBF\ cuts:} & m_{jj} \geq 400 \ {\rm GeV}, \ \Delta y_{jj} \geq 2.8 \\ \end{array}$
- jet multiplicity plots: 0-jet excl.: no jet with $p_{\perp} \ge \{20, 25, 30\}$ GeV 2-jet incl.: at least two jets with $p_{\perp} \ge \{20, 25, 30\}$ GeV
- SHERPA with $H + \{0,1,2\}^{(NLO)} + \{3\}^{(LO)}$ jets, $Q_{\mathrm{cut}} = 20\,GeV$

《曰》 《圖》 《臣》 《臣》

Inclusive observables for gg ightarrow H

Exclusive observables for gg ightarrow H

$gg \rightarrow H$ after WBF cuts

Summary

Multijet merging at NLO

gg ightarrow H after WBF cuts

F. Krauss

Precision Monte Carlo

Quark mass effects

• include effects of quark masses

• reweight NLO HEFT with LO ratio:

$$\mathrm{d}\sigma_{\mathrm{mass}}^{(\mathrm{NLO})} \approx \mathrm{d}\sigma_{\mathrm{HEFT}}^{(\mathrm{NLO})} \times \frac{\mathrm{d}\sigma_{\mathrm{mass}}^{(\mathrm{LO})}}{\mathrm{d}\sigma_{\mathrm{HEFT}}^{(\mathrm{LO})}}$$

<ロ> <同> <同> <同> <同> <同

Introduction Ingredients ME corrections Matching Multijet merging Summary

Multijet merging at NLO

Quark mass effects - results

• top mass effect in MEPs@NLO (on Higgs- p_{\perp})

comparison S-MC@NLO- HRES (top-loop only)

- 《口》 《聞》 《臣》 《臣》 三臣 - のへで

b-mass effects

- *b*-mass effects more tricky
- relevant only for (negative) interference of top- and bottom-loops (bottom² double Yukawa - supressed)
- but: cannot start shower at m_H radiation "sees" bottom at all scales above m_b ⇒ must use full theory there
- p_T spectrum naively "squeezed" funny shapes
- LO multijet merging improves situation

・ロト ・得ト ・ヨト ・ヨ

Multijet merging at NLO

b-mass effects: playtime

- イロト (四) (注) (注) (注) (つ)()

b-mass effects: playtime (cont'd)

- * ロ * * 御 * * 言 * * 言 * うくで
Higgs backgrounds: inclusive observables in W^+W^- +jets

| ▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ の Q @

Higgs backgrounds: jet vetoes in W^+W^- +jets

Introduction Ingredients ME corrections Matching Multijet merging Summar

Multijet merging at NLO

Higgs backgrounds: gluon-induced processes W^+W^- +jets

• include (LO-) merged loop² contributions of gg
ightarrow VV (+1 jet)

- イロト イヨト イヨト イヨー シタや

Higgs backgrounds: jet vetoes in W^+W^- +jets

Relevant observables for $VH \rightarrow 3\ell$: $m_{123} \& \Delta R_{01}$

IPPP

Differences between MEPS@NLO, UNLOPS & FxFx

	FxFx	MePs@Nlo	UNLOPS
ME	all internal	${\cal V}$ external	all external
	aMc@NLo_MADGRAPH	COMIX or AMEGIC++	
		${\cal V}$ from OpenLoops, BlackHat, Mjet, \ldots	
shower	external	intrinsic	intrinsic
	HERWIG OF PYTHIA		Рутніа
Δ_N	analytical	from PS	from PS
$\Theta(Q_J)$	a-posteriori	per emission	per emission
Q_J -range	relatively high	> Sudakov regime	pprox Sudakov regime
	(but changed)		
		pprox 10%	pprox 10%

Introduction Ingredients ME corrections Matching Multijet merging Summa

Other merging approaches: FxFx & friends

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, aMC@NLO_MADGRAPH with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

- イロト (個) (注) (注) (注) 三 のへの

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, aMC@NLO_MADGRAPH with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

▲日▼▲□▼▲回▼▲回▼ 回 ものぐら

ntroduction Ingredients ME corrections Matching Multijet merging Summa

Other merging approaches: FxFx & friends

FxFx: Q_J dependence in $t\bar{t}$

(R.Frederix & S.Frixione, JHEP 1212 (2012) 061)

Aside: merging without Q_J - the MINLO approach

(K.Hamilton, P.Nason, C.Oleari & G.Zanderighi, JHEP 1305 (2013) 082)

- based on POWHEG + shower from PYTHIA or HERWIG
- up to today only for singlet S production, gives NNLO + PS
- basic idea:
 - use S+jet in POWHEG
 - push jet cut to parton shower IR cutoff
 - apply analytical NNLL Sudakov rejection weight for intrinsic line in Born configuration

(kills divergent behaviour at order α_s)

イロト イポト イヨト イヨト

- don't forget double-counted terms
- reweight to NNLO fixed order

NNLOPS for H production

(K.Hamilton, P.Nason, E.Re & G.Zanderighi, JHEP 1310 (2013) 222)

IPPP

Summary

- Systematic improvement of event generators by including higher orders has been at the core of QCD theory and developments in the past decade:
 - multijet merging ("CKKW", "MLM")
 - NLO matching ("MC@NLO", "POWHEG")
 - MENLOPS NLO matching & merging
 - MEPS@NLO ("SHERPA", "UNLOPS", "MINLO", "FxFx")

- multijet merging an important tool for many relevant signals and backgrounds - pioneering phase at LO & NLO over
- complete automation of NLO calculations done
 - \longrightarrow must benefit from it!

(it's the precision and trustworthy & systematic uncertainty estimates!)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Famous last screams

• in Run-II we're in for a ride:

more statistics more energy more channels more precision more fun

• ... and all with QCD ...

oh, and btw.: all tools are public & used