July 8, 2015, Pittsburgh

Jets

Zoltan Nagy DESY

What are Jets?

A di-jet ATLAS event

What are Jets?

A multi-jet (6-jet) event

What are Jets?

- The pT is concentrated in a few narrow sprays of particles
- These sprays are called jets.
- Events with big total pT are rather rare...
- ... but when they happen, the pT is always in jets

Why are the Jets there?

Here is a Feynman graph for quad-quark scattering with additional radiation that can contribute to the jet events.

- Initial state
 - $\text{ If } p_1 \to 0 \text{, then } 1/(p_a p_1)^2 \to \infty$ $\text{ If } p_1 \to \lambda p_a \text{, then } 1/(p_a p_1)^2 \to \infty$

• Final state

- If $p_2 \rightarrow 0$, then $1/(p_2 + p_3)^2 \rightarrow \infty$
- If $p_3 \rightarrow 0$, then $1/(p_2 + p_3)^2 \rightarrow \infty$
- If $p_3 \rightarrow \lambda p_2$, then $1/(p_2 + p_3)^2 \rightarrow \infty$

The probability is big to get a spray of collimated particles plus some low momentum particles with wide angle.

The jet algorithm find Jet structure at large resolution scale: one fat jet 1.1 These hadrons are part of the "beam jet" when Electron the jet resolution is crude. R H1 jet event ż

- Let us consider a 3-jet event in e+e- annihilation with the typical resolution scale Q.
- At each vertex in a diagram, there is a factor of the strong coupling, $g_s^2/(4\pi) = \alpha_s$
- The simplest graph that contributes to this process is the tree level graph

Tree level graph

All the three patrons are well separated from each others and the "distance" is measured by some hardness variable like transverse momentum or virtuality.

- In the perturbation theory should consider radiative correction.
- We can consider one more gluon in the final state...

- In the perturbation theory should consider radiative correction.
- We can consider one more gluon in the final state...

- In the perturbation theory should consider radiative correction.
- We can consider one more gluon in the final state...

- Everything inside the green cone is unresolvable and integrated out.
- It is a singular integral.
- This singularity has to be cancelled. Otherwise we cannot make pQCD predictions for jet production.

4-jet configuration all the four patrons are well separated

We have to also consider the virtual corrections, thus we have graphs like...

INFRARED SAFETY

- Singularities has to be cancelled between the two graphs!!!
- This cancelation has to be ensured by the jet definition!!!

Infrared Safety

The jet algorithm has to be infrared safe. This means it has to be *insensitive for any small scale physics* (soft or collinear radiation).

- We construct jets from particle momenta $\{p_1, p_2, \ldots, p_m\}$.
- We get N jets with momenta $\{P_1, P_2, \ldots, P_N\}$.

- If any p_i becomes very small, we should get the same jets by leaving particle i out.
- If any two momenta p_i and p_j become collinear, we should get the same jets by replacing the particles by one with momentum $p_i + p_j$.

Jet Cross Sections

In the general case the cross section is given by

$$\sigma[F] = \sum_{m} \frac{1}{m!} \int d\{p, f\}_{m} |M(\{p, f\}_{m})|^{2} \underbrace{F(\{p\}_{m})}_{\text{Jet measurement function}} f(\{p\}_{m}) \equiv F(p_{1}, p_{2}, \dots, p_{m})$$

INFRARED SAFETY (formal definition):

 $\sigma[F] \Longrightarrow \frac{d\sigma}{dp_T \, du}$

$$F(p_1, p_2, \dots, p_m, p_{m+1}) \xrightarrow{p_{m+1} \to 0} F(p_1, p_2, \dots, p_m)$$

$$F(p_1, p_2, \dots, p_m, p_{m+1}) \xrightarrow{p_m \parallel p_{m+1}} F(p_1, p_2, \dots, p_m + p_{m+1})$$

One can consider for example the inclusive one jet cross section

Rapidity of the observed jet

$$F(\{p\}_m) \Longrightarrow \delta(p_T - \underbrace{P_T(\{p\}_m)})\delta(y - \overbrace{Y(\{p\}_m)})$$

Transverse momentum of the observed jet

One Jet Inclusive Cross Section

Jet Algorithms

- There are two kind of algorithms for defining jets:
 - cone algorithms
 - successive combination algorithms
- Both can be infrared safe.
- I will discuss just the successive combination algorithms.
- This traces back to the JADE collaboration at DESY.

THE KT JET ALGORITHM

- Choose an angular resolution parameter R
- Start with the list of protojets, specified by their momenta $\{p_1, p_2, \ldots, p_m\}$.
- Start with an empty list of finished jets, {}.
- The result is a list of finished jets with their momenta, $\{P_1, P_2, \ldots, P_N\}$.
- Many are low pT debris, just ignore them.

kT Jet Algorithm

1. For each pair of protojets define

$$d_{ij} = \min\left\{p_{T,i}^2, p_{T,j}^2\right\} \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2\right] / R^2$$

and for each protojet define

$$d_i = p_{T,i}^2$$

2. Find the smallest of the d_{ij} and the d_i

$$d_{\min} = \min_{i,j} \{d_i, d_{ij}\}$$

3. If d_{\min} is a d_{ij} , merge protojets *i* and *j* into a new protojets *k* with momentum

$$p_k = p_i + p_j$$

- 4. If d_{\min} is a d_i , then protojet *i* is ``not mergable". Remove it from the list of protojets and add it to the list of finished jets.
- 5. If protojets remain, go to step 1.

kT Jet Algorithm

Why the name?

 $d_{ij} = \min\left\{p_{T,i}^2, p_{T,j}^2\right\} \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2 \approx \frac{k_\perp^2}{R^2}$

Infrared safety of this:

- Suppose $p_j \rightarrow 0$
 - Then when it merges with other protojet,

$$p_k = p_i + p_j \to p_i$$

- If it never mergers with other protojets , then it just remains as a low p_T jets a the end.

• Suppose $p_i = \lambda p_j$

- Then protojets i and j are always merged at the beginning to

$$p_k = p_i + p_j$$

Example with kT Algorithm

Here is an event from Cacciari, Salam and Soyes (2008). An event was generated by HERWIG++ along with (lots of) random soft particles.

- The detector area that goes into each jet is irregular.
- The kT algorithm has the tendency to "suck" in low pT radiation and contaminate the jets with underlaying event.

Cambridge-Aachen Algorithm

This is a variation on the general successive combination algorithm. The only difference is in the "distance" measure.

$$d_{ij} = \left[(y_i - y_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2$$

$$d_i = 1$$

Only the angles count!

With this algorithm the jets still have irregular shape.

Anti-kT Algorithm

This is another variation on the general successive combination algorithm. The only difference is in the "distance" measure.

$$d_{ij} = \min\left\{\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}\right\} \left[(y_i - y_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2$$
$$d_i = \frac{1}{p_{T,i}^2}$$

The highest pT protojet has the priority to absorb nearby softer protojets.

The high pT jets are round.

When Fixed Order Brakes Down

Let us consider 2photon + 1jet inclusive production and plot the di-photon pT distribution

• For this distribution the characteristic scale is

$$Q^2 = (p_{\gamma\gamma,\perp} - 40 \,\mathrm{GeV})^2$$

- The NLO distribution has discontinuity at 40GeV. It is -∞ from the right and +∞ from the left.
- The singularities are logarithms (it appears finite because of the bin smearing effect).
- The effective expansion variable is

$$\alpha_{\rm s}(Q^2) \log^2 \frac{Q^2}{(40\,{\rm GeV})^2}$$

This effect has to be summed up all order.
 NLO calculation is not enough.

We have to also consider the virtual corrections, thus we have graphs like...

When Q gets small the coupling and the logarithm blow up.

Conclusions

- QCD gives us jets.
- Jets are real and seen in experiments.
- To measure jet cross sections, you need a careful definition of jets.
- At LHC we use successive combination algorithms, such as kT, Cambridge-Aache or anti-kT algorithm.
- The definition needs to be infrared safe.
- Infrared safety allow us to make pQCD prediction.
 - Fixed order calculations, LO, NLO or NNLO
- Jet cross sections (in general pQCD cross sections) usually suffers on large logarithms and these logarithms need to be summed up all order.
 - Summing up logarithms analytically
 - Summing up logarithm numerically by parton shower algorithms.