Boosted Jets and Jet Substructure

CTEQ Summer School

Salvatore Rappoccio (State University of New York at Buffalo)

Outline

Motivation

- Jet Algorithms
- Substructure
- Analytics
- W/Z/H taggers
- Top quark taggers

(No pileup discussions today)

- To study QCD partons : need jets!
- Need to associate jets to individual partons (quarks or gluons)
- Traditionally : 1-to-1 matching of jets to partons

- Problem! For boosted case cannot use this assumption!
- Have to consider cases where partons merge into a single jet -

Relativistic kinematics of boosted objects

$$m^{2} = (p_{1}^{\mu} + p_{2}^{\mu})^{2}$$
$$= p_{1}^{2} + p_{2}^{2} + 2p_{1}^{\mu}p_{2,\mu}$$

If m1 = m2 = 0

$$m^{2} = 2(E_{1}E_{2} - \vec{p_{1}} \cdot \vec{p_{2}})$$

$$m^{2} = 2E_{1}E_{2}(1 - \cos\theta_{12})$$

$$m^{2} = \frac{E^{2}}{2}(1 - \cos\theta_{12})$$

$$2\frac{m^{2}}{E^{2}} = (1 - \cos\theta_{12})$$

• Small angle approximation for theta :

$$2\frac{m^2}{E^2} = (1 - \cos\theta_{12})$$

$$2\frac{m^2}{E^2} = \left(1 - \left(1 - \frac{\theta_{12}^2}{2}\right) = \frac{\theta_{12}^2}{2}\right)$$

$$4\frac{m^2}{E^2} = \theta_{12}^2$$

$$\theta_{12} = 2\frac{m}{E} = \frac{2}{\gamma}$$

• Limiting cases:

 Now can quantify when 1to-1 parton-jet assignment breaks down!

$$\theta_{12} = 2\frac{m}{E} = \frac{2}{\gamma}$$

If theta required to be

 0.8, you throw away
 events with
 gamma > 2.5

Inadvertently place a maximum E cut!

• Can see this in analyses

"Resolved" selections turn off, "boosted" selections turn on

Motivation

Outline

Motivation

- Substructure
- Analytics
- W/Z/H taggers
- Top quark taggers

A little QCD

Let's take it from the top:
 – QCD has these vertices:

 An evolution of a QCD final state should therefore mostly have the first two, but in reverse (1->2)

- Pairwise examination of input 4vectors
- Calculate

$$d_{ij} = min(k_{ti}^n, k_{tj}^n)\Delta R_{ij}^2/R^2$$

Also find the "beam distance"

$$d_{iB} = k_{T,i}^n$$

- Find min of all d_{ij} and d_{iB}
 - If min is a dij, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

- Different types
 - N = 2: "kT"
 - "QCD in reverse"
 - N = 0 :
 "Cambridge-Aachen" (CA)
 - Distance only, irregular, very useful for substructure!
 - N = -2: "anti-kT"
 - "Idealized" cone algorithm

- **Different types**
 - -N = 2: "kT"
 - "QCD in reverse"
 - -N=0: "Cambridge-Aachen" (CA)
 - Distance only, irregular, very useful for substructure!
 - -N = -2: "anti-kT"
 - "Idealized" cone algorithm

p [GeV]

25

20

15

10

5 0

5

Cacciari, Salam, Soyez

- Different types
 - N = 2: "kT"
 - "QCD in reverse"
 - N = 0 :
 "Cambridge-Aachen" (CA)
 - Distance only, irregular, very useful for substructure!
 - N = -2: "anti-kT"
 - "Idealized" cone algorithm

- Different types
 - N = 2: "kT"
 - "QCD in reverse"
 - N = 0 :
 "Cambridge-Aachen" (CA)
 - Distance only, irregular, very useful for substructure!
 - N = -2: "anti-kT"
 - "Idealized" cone algorithm

- Motivation
- Jet Algorithms

- Analytics
- W/Z/H taggers
- Top quark taggers

Jet Substructure

- Let's go back to the QCD jet... what happens if there's a particle with mass > 0 at a vertex?
 - Different kinematics
 - Invariant mass of constituents is > 0
 - The clustering sequence has specific features that relate to mass scales

Jet Substructure

$$\theta_{12} = 2\frac{m}{E} = \frac{2}{\gamma}$$

- Massive particles:
 - -Wider-angle splittings
 - -Symmetric splittings
- QCD Jets : m ~ 0
 - -Many low-angle splittings
 - -Asymmetric splittings

History of Jet Substructure and Boosted Jet Tools

• M. H. Seymour, Phys. C62 (1994) 127–138

- J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Phys. Rev. Lett. 100 (2008) 242001
- S. D. Ellis, C. K. Vermilion and J. R. Walsh, Phys. Rev. D 81 (2010) 094023
- S. D. Ellis, C. K. Vermilion and J. R. Walsh, Phys. Rev. D 80 (2009) 051501
- D. Krohn, J. Thaler and L. -T. Wang, JHEP 1002 (2010) 084
- Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Webber, JHEP 9708 (1997) 001
- M. Wobisch and T. Wengler, In *Hamburg 1998/1999, Monte Carlo generators for HERA physics* 270-279
- M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, arXiv:1307.0013
- M. Dasgupta, L. Magnea and G. P. Salam, JHEP 0802 (2008) 055
- D. E. Kaplan, K. Rehermann, M. D. Schwartz, and B. Tweedie, Phys.Rev.Lett. 101 (2008) 142001
- ATLAS Collaboration, ATL-PHYS-CONF-2008-008. ATL-COM-PHYS-2008-001
- CMS Collaboration, CMS-PAS-JME-09-001, 2009
- J. Thaler and K. Van Tilburg, JHEP 1103 (2011) 015
- T. Plehn, M. Spannowsky, M. Takeuchi, and D. Zerwas, JHEP 1010 (2010) 078
- Backovic, Gabizon, Juknevich, Perez, Soreq, JHEP 1404 (2014) 176
- D. E. Soper and M. Spannowsky, Phys.Rev. D84 (2011) 074002
- M. Jankowiak and A. J. Larkoski, HEP 1106 (2011) 057
- S. D. Ellis, A. Hornig, T. S. Roy, D. Krohn, and M. D. Schwartz, Phys.Rev.Lett. 108 (2012) 182003
- M. Backovic, J. Juknevich, and G. Perez, JHEP 1307 (2013) 114
- A. J. Larkoski, G. P. Salam, and J. Thaler, JHEP 1306 (2013) 108
- J. Gallicchio and M. D. Schwartz, Phys.Rev.Lett. 107 (2011) 172001
- S. D. Ellis, C. K. Vermilion, J. R. Walsh, A. Hornig, and C. Lee, JHEP 1011 (2010) 101
- M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, and M. Spannowsky, JHEP 1210 (2012) 126
- D. Bertolini, T. Chan, and J. Thaler, arXiv:1310.7584
- M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, JHEP 1309 (2013) 029,
- M. Dasgupta, A. Fregoso, S. Marzani, and A. Powling, Eur. Phys. J. C, 73 11 (2013) 2623
- D. Krohn, M. Low, M. D. Schwartz, and L.-T. Wang, arXiv:1309.4777
- A. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 1405 (2014) 146
- S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Tonnesmann, Prog.Part.Nucl.Phys. 60 (2008) 484-551
- This list is by no means exhaustive
- If you can read this, you have passed your eye exam. Congratulations.

LET ME 'SPLAIN....NO, THERE IS TOO MUCH...

History of Jet Substructure and Boosted Jet Tools

Very active research field

Gavin Salam (CERN)

Jet substructure @ CMS substructure workshop, April 2013

Slide from Gavin Salam

3

History of Jet Substructure and Boosted Jet Tools

Very active research field

apologies for omitted taggers, arguable links, etc.

Gavin Salam (CERN)

Jet substructure @ CMS substructure workshop, April 2013

Slide from Gavin Salam

3

Jet Grooming

9-July 2015

- Motivation
- Jet Algorithms
- Substructure
- Analytics

- W/Z/H taggers
- Top quark taggers

- Major advances recently in first-principles analytic calculations of jet properties
 - Overhauled understanding of what these techniques are actually doing
 - Allowed a formation of "theoretically sound" techniques
 - Informing decisions for the experiments!

Jet Analytics

First need to understand jet mass

44 Pep 0 1

44 Pep 0

44 Pep 0

44 Pep 0

- Take-home message : QCD MC is basically getting the right answer (some better than others)
- Why is that?

Jet Analytics

First need to understand jet mass

44 Pep 0 1

First need to understand jet mass

48 Pep 0 1

Jet Grooming Analytics

• What are groomers doing?

M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, JHEP 1309 (2013) 029,

Jet Grooming Analytics

• What are groomers doing?

44 Pep 0 1

44 Pep 0 1

Jet Grooming Analytics

 Understanding gained from jet analytics even gives new and better ways to groom and tag!

Soft drop : "simple" behavior in this plane, with tunable parameter for many algorithms!

Jet Grooming Analytics

• Soft drop :

- Undo last stage of C/A clustering, label subjets j1,j2

If:

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

then j is soft dropped else redefine j to be the harder, and iterate

- Recovers (modified) mass drop BDRS tagger for beta=0
 - This case always removes soft radiation entirely (hence the name)

Substructure Variables

• A plethora of variables to choose from :

N-subjettiness
$$\tau_N^{(\beta)} = \sum_i p_{Ti} \min \left\{ R_{1,i}^{\beta}, R_{2,i}^{\beta}, \dots, R_{N,i}^{\beta} \right\}$$

Energy correlation function

$$\operatorname{ECF}(N,\beta) = \sum_{i_1 < i_2 < \dots < i_N \in J} \left(\prod_{a=1}^N E_{i_a}\right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^N \theta_{i_b i_c}\right)^{\beta}$$

 Mass drop (mass of heaviest subjet over mass of jet)

- Subjet momentum balance (or subjet asymmetry) $\sqrt{y} \equiv \min(p_{T_{j_1}}, p_{T_{j_2}}) \frac{\Delta R_{(j_1, j_2)}}{m_0}$

Substructure Variables

Can also look into n-subjettiness, energy correlation functions $C_{1}^{\left(\alpha\right)} = \frac{\text{ECF}\left(2,\alpha\right)\text{ECF}\left(0,\alpha\right)}{\text{ECF}\left(1,\alpha\right)^{2}},$

A. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 1405 (2014) 146

$$ECF(0, \alpha) = 1,$$

$$ECF(1, \alpha) = \sum_{i \in jet} p_{Ti},$$

$$ECF(2, \alpha) = \sum_{i < j \in jet} p_{Ti} p_{Tj} \left(\frac{\Delta R_{ij}}{R_0}\right)^2$$

ECF
$$(2, \alpha) = \sum_{i < j \in jet} p_{Ti} p_{Tj} \left(\frac{\Delta R_{ij}}{R_0}\right)^{\alpha}$$
.

Analytic

10⁻³ C₁⁽²⁾

10⁻²

10⁻¹

10⁰

plain jet

B=2

B=1

B=0

10⁻⁴

β=-0.5

dashed: one em.

solid: mult. em.

- Jet Algorithms
- Substructure
- Analytics
- W/Z/H taggers
 - Top quark taggers

W/Z/H Tagging

• CMS : pruned jet mass window and 2-jettiness

 ATLAS : filtered jet mass window and asymmetry cut

ATL-PHYS-PUB-2014-004

CMS-JME-13-006

W/Z/H Tagging

CMS moving to soft drop instead of pruning

44 Pep 0 1

CMS-JME-14-002

9-July 2015

W/Z/H Tagging

N-subjettiness

ATL-PHYS-PUB-2014-004

9-July 2015

• Jet Algorithms

- Substructure
- Analytics
- W/Z/H taggers

Top quark taggers

Top Tagging

JHU / CMS top tagger

 Phys.Rev.Lett. 101 (2008) 142001

44 Pep 0 1

- Break up cluster sequence to get three or four subjets
- Impose top and W mass
 - Top mass ~ jet mass
 - W mass ~ min pairwise mass

HEP top tagger

- Break up cluster sequence to get three or four subjets
- Impose "Dalitz-like" cuts

9-July 2015

Top Tagging : N-subjettiness

N-subjettiness

Top Tagging Analytics : Shower Deconstruction

- Make "microjets" out of CA jet constituents
- Keep at most 9 microjets with pt > ptmin
- Approximate probability for observed particles to satisfy a "signal-like" shower, or a "background-like" shower
- Construct likelihood and compare

Top Tagging Analytics : Shower Deconstruction

Excitement?

Excitement?

CMS X -> WH (Inubb) EXO-2014-010

Public Service Announcement

