

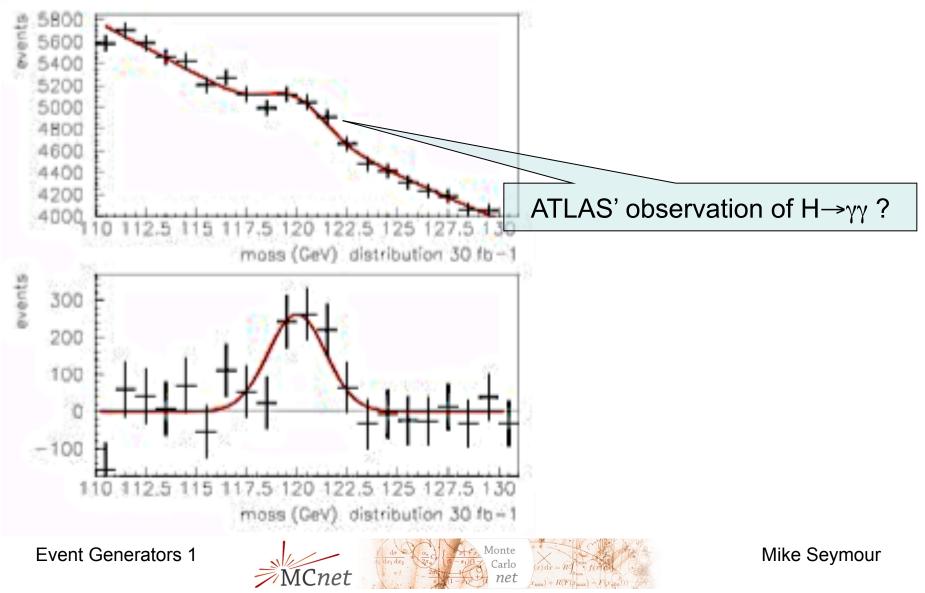
The University of Manchester

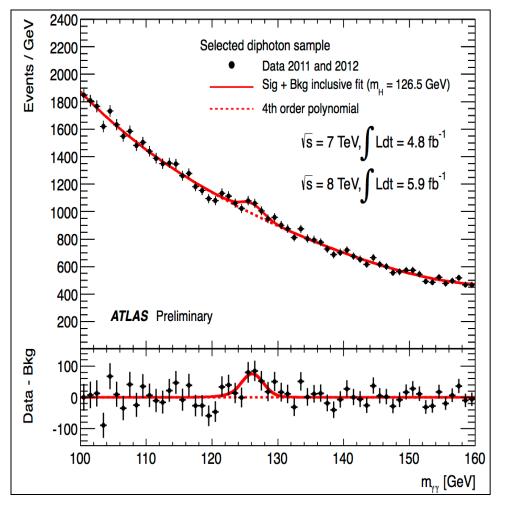
Monte Carlo Event Generators

Mike Seymour University of Manchester

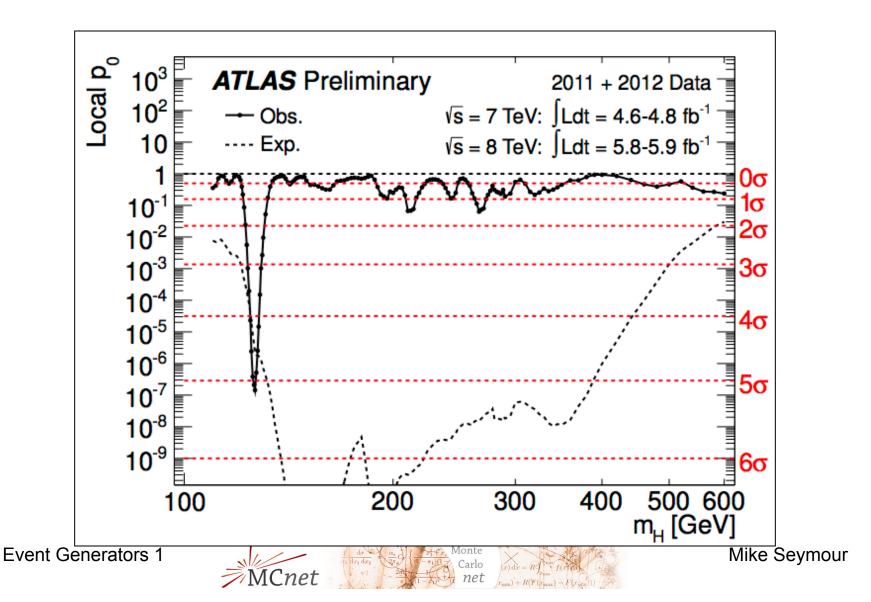
CTEQ school University of Pittsburgh, 7–17 July 2015

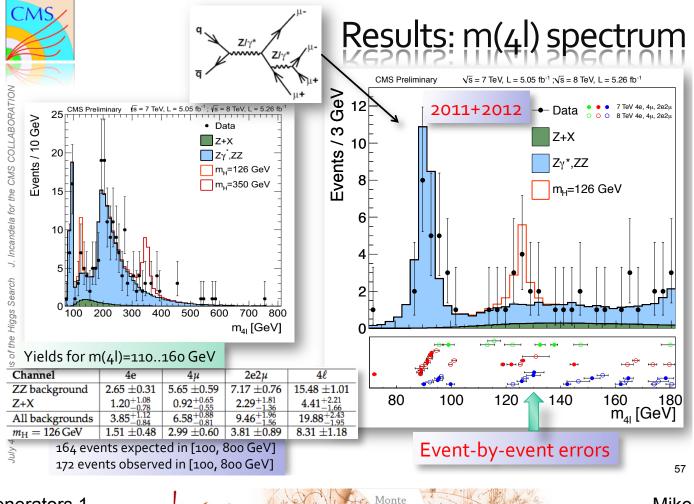






Event Generators 1





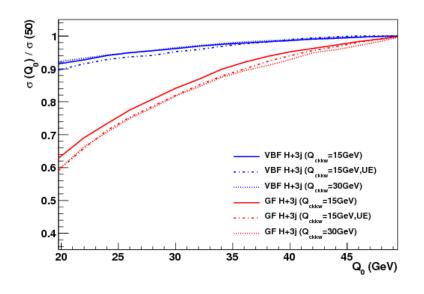
Carlo

net

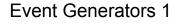
 $(x_{\min}) + R(F(x_{\max}))$

MCnet

Event Generators 1

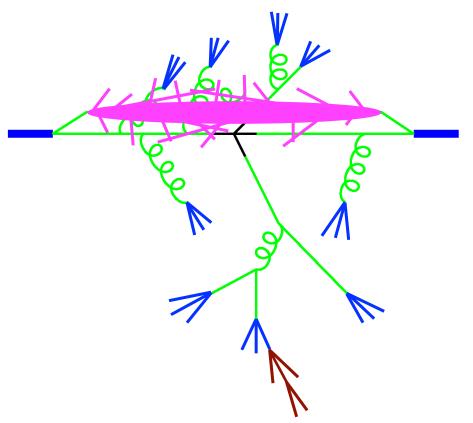


- Beyond discovery:
 - measure Higgs couplings,
 e.g. separate gg→H from
 VBF→H using jet veto in
 central region
 - (B.E.Cox, J.R.Forshaw,
 A.D.Pilkington, Phys. Lett.
 B696 (2011) 87)
 - Needs accurate prediction of very detailed event properties



Structure of LHC Events

- 1. Hard process
- 2. Parton shower
- 3. Hadronization
- 4. Underlying event
- 5. Unstable particle decays



Event Generators 1

Intro to Monte Carlo Event Generators

- 1. Monte Carlo technique / hard process
- 2. Parton showers
- 3. Hadronization
- 4. Underlying Event / Soft Inclusive Models

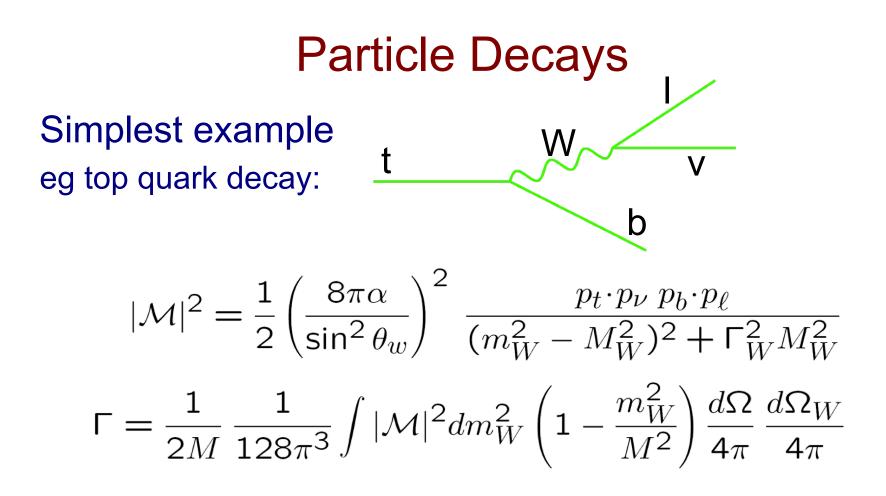
Integrals as Averages

- Basis of all Monte Carlo methods: $I = \int_{x_1}^{x_2} f(x) \, dx = (x_2 - x_1) \langle f(x) \rangle$
- Draw N values from a uniform distribution: $I \approx I_N \equiv (x_2 - x_1) \frac{1}{N} \sum_{i=1}^N f(x_i)$

• Central limit theorem: $I \approx I_N \pm \sqrt{V_N/N}$

$$V = (x_2 - x_1) \int_{x_1}^{x_2} [f(x)]^2 dx - \left[\int_{x_1}^{x_2} f(x) dx\right]^2$$

Event Generators 1

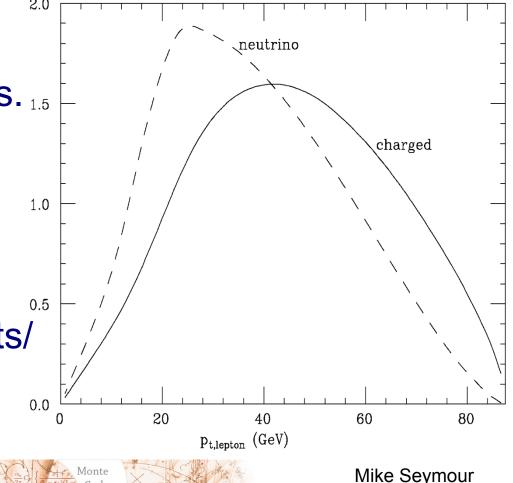


Event Generators 1

Associated Distributions

Big advantage of Monte Carlo integration: 2.0 simply histogram any associated quantities. 1.5 Almost any other technique requires 1.0 new integration for each observable. 0.5 Can apply arbitrary cuts/ smearing. 0.0

eg lepton momentum in top decays:



Event Generators 1

Leading Order Monte Carlo Calculations

- Now have everything we need to make leading order cross section calculations and distributions
- Can be largely automated...
- MADGRAPH
- AMEGIC++/COMIX
- COMPHEP
- ALPGEN
- GRACE

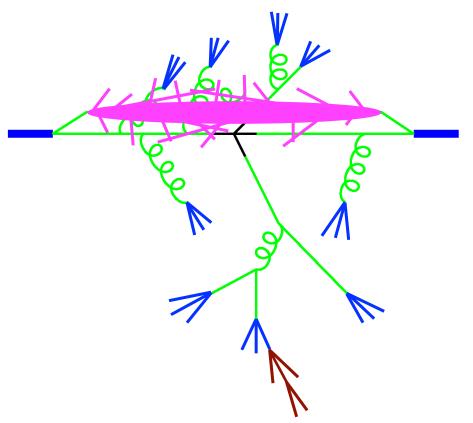
But...

- Fixed parton/jet multiplicity
- No control of large logs
- Parton level → Need hadron level event generators

Event Generators 1

Structure of LHC Events

- 1. Hard process
- 2. Parton shower
- 3. Hadronization
- 4. Underlying event
- 5. Unstable particle decays

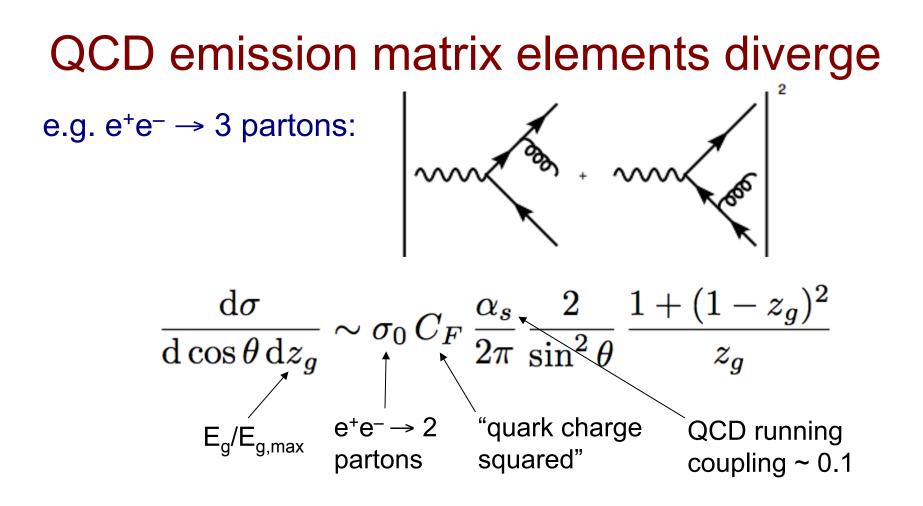


Event Generators 1

Parton Showers: Introduction

- QED: accelerated charges radiate.
- QCD identical: accelerated colours radiate.
- gluons also charged.
- \rightarrow cascade of partons.
- = parton shower.

- 1. e^+e^- annihilation to jets.
- 2. Universality of collinear emission.
- 3. Sudakov form factors.
- 4. Universality of soft emission.
- 5. Angular ordering.
- 6. Initial-state radiation.
- 7. Hard scattering.
- 8. Heavy quarks.
- 9. Dipole cascades.



Divergent in collinear limit $\theta \rightarrow 0,\pi$ (for massless quarks) and soft limit $z_g \rightarrow 0$

Event Generators 1

can separate into two independent jets:

$2 d\cos\theta$	_	$d\cos\theta$ _	$d\cos\theta$
$\sin^2 \theta$	_	$1 - \cos \theta$	$\frac{1}{1+\cos\theta}$
		$d\cos\theta$ _	$d\cos\overline{ heta}$
	_	$1 - \cos \theta$	$\overline{1-\cosar{ heta}}$
	\approx	$\frac{d\theta^2}{\theta^2} + \frac{d\overline{\theta}^2}{\overline{\theta}^2}$	

jets evolve independently

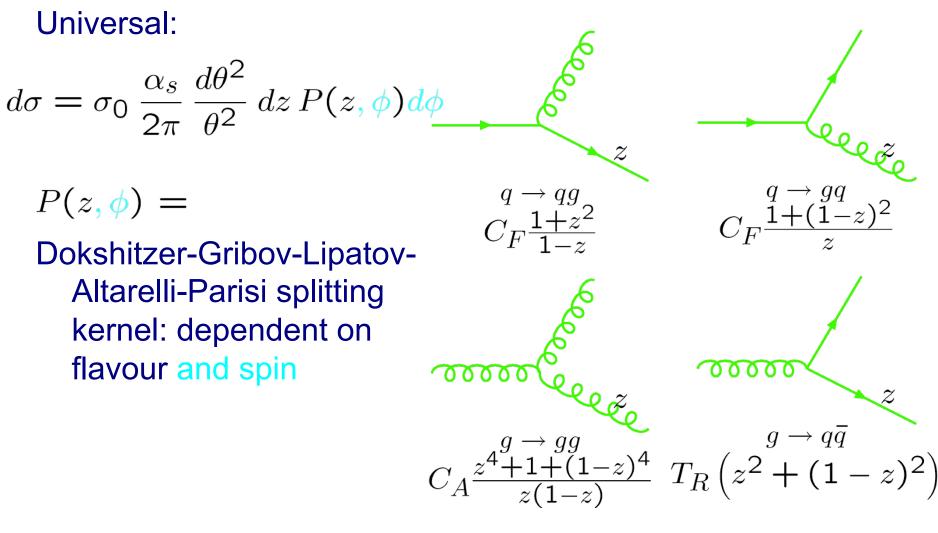
$$d\sigma = \sigma_0 \sum_{\text{jets}} C_F \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz \frac{1 + (1 - z)^2}{z}$$

Exactly same form for anything $\propto \theta^2$ eg transverse momentum: $k_{\perp}^2 = z^2(1-z)^2 \ \theta^2 \ E^2$ invariant mass: $q^2 = z(1-z) \ \theta^2 \ E^2$

$$\frac{d\theta^{2}}{\theta^{2}} = \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} = \frac{dq^{2}}{k_{\perp}^{2}}$$
MCnet
$$\frac{d\theta^{2}}{k_{\perp}^{2}} = \frac{dq^{2}}{k_{\perp}^{2}}$$

Event Generators 1

Collinear Limit



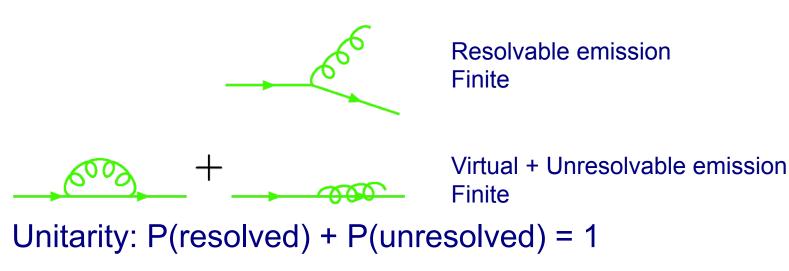
Event Generators 1

Resolvable partons

What is a parton? Collinear parton pair $\leftrightarrow \rightarrow$ single parton

Introduce resolution criterion, eg $k_{\perp} > Q_0$.

Virtual corrections must be combined with unresolvable real emission



Event Generators 1

Sudakov form factor

Probability(emission between q^2 and $q^2 + dq^2$) $d\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} dz \ P(z) \equiv \frac{dq^2}{q^2} \bar{P}(q^2).$

Define probability(no emission between Q^2 and q^2) to be $\Delta(Q^2, q^2)$. Gives evolution equation

$$\frac{d\Delta(Q^2, q^2)}{dq^2} = \Delta(Q^2, q^2) \frac{d\mathcal{P}}{dq^2}$$
$$\Rightarrow \Delta(Q^2, q^2) = \exp - \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2).$$

c.f. radioactive decay atom has probability λ per unit time to decay. Probability(no decay after time T) = $\exp - \int^T dt \lambda$

Event Generators 1

Sudakov form factor

Probability(emission between q^2 and $q^2 + dq^2$) $d\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} dz \ P(z) \equiv \frac{dq^2}{q^2} \bar{P}(q^2).$

Define probability(no emission between Q^2 and q^2) to be $\Delta(Q^2, q^2)$. Gives evolution equation

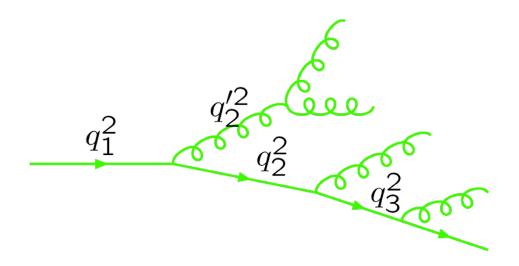
$$\frac{d\Delta(Q^2, q^2)}{dq^2} = \Delta(Q^2, q^2) \frac{d\mathcal{P}}{dq^2}$$
$$\Rightarrow \Delta(Q^2, q^2) = \exp - \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2).$$

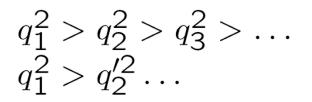
 $\Delta(Q^2, Q_0^2) \equiv \Delta(Q^2)$ Sudakov form factor =Probability(emitting no resolvable radiation)

 $\Delta_q(Q^2) \sim \exp_{Carlo} \frac{\alpha_s}{2\pi} \log^2 \frac{Q^2}{Q^2}$ MCnet

Event Generators 1

Multiple emission





But initial condition? $q_1^2 <???$

Process dependent

Event Generators 1

Monte Carlo implementation

Can generate branching according to

$$d\mathcal{P} = \frac{dq^2}{q^2} \bar{P}(q^2) \,\Delta(Q^2, q^2)$$

By choosing $0 < \rho < 1$ uniformly: If $\rho < \Delta(Q^2)$ no resolvable radiation, evolution stops. Otherwise, solve $\rho = \Delta(Q^2, q^2)$ for q^2 =emission scale

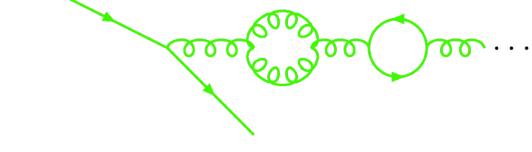
Considerable freedom: Evolution scale: $q^2/k_{\perp}^2/\theta^2$? z: Energy? Light-cone momentum? Massless partons become massive. How? Upper limit for q^2 ?

Event Generators 1

All formally free choices, but can be very important numerically

Running coupling

Effect of summing up higher orders:



absorbed by replacing α_s by $\alpha_s(k_{\perp}^2)$.

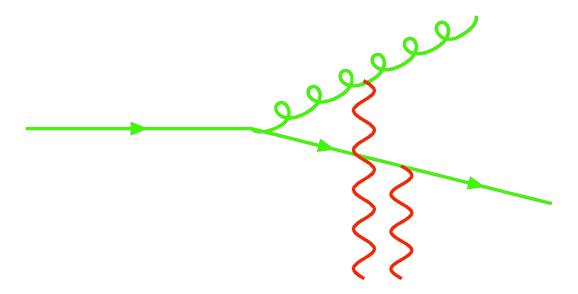
Much faster parton multiplication – phase space fills with soft gluons.

Must then avoid Landau pole: $k_{\perp}^2 \gg \Lambda^2$. Q_0 now becomes physical parameter!

Event Generators 1

Soft limit

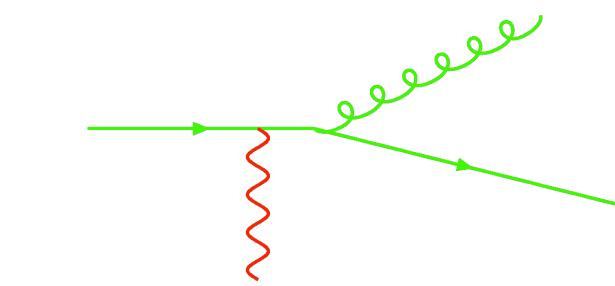
Also universal. But at amplitude level...



soft gluon comes from everywhere in event.
→ Quantum interference.
Spoils independent evolution picture?

Event Generators 1

Angular ordering



outside angular ordered cones, soft gluons sum coherently: only see colour charge of whole jet.

Soft gluon effects fully incorporated by using θ^2 as evolution variable: angular ordering

Mike Seymour

First gluon not necessarily hardest!

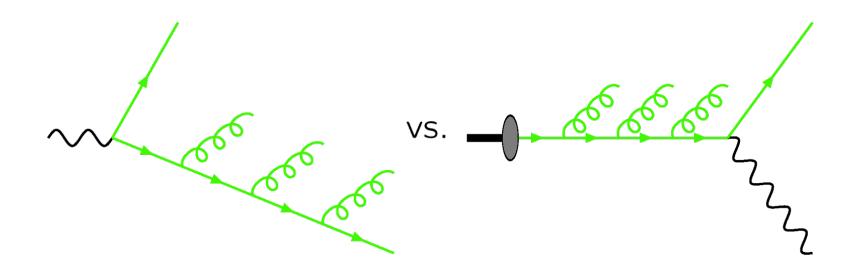
Event Generators 1

NO:

Initial state radiation

In principle identical to final state (for not too small x)

In practice different because both ends of evolution fixed:



Use approach based on evolution equations...

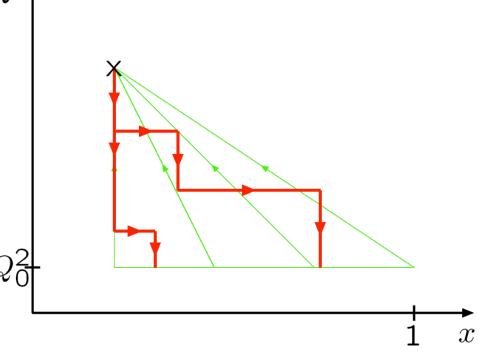
Event Generators 1

Backward evolution

DGLAP evolution: pdfs at(x, Q^2) as function of pdfs at ($> x, Q_0^2$):

Evolution paths sum over all possible events.

Formulate as backward evolution: start from hard scattering and work down in up/in towards incoming hadron.

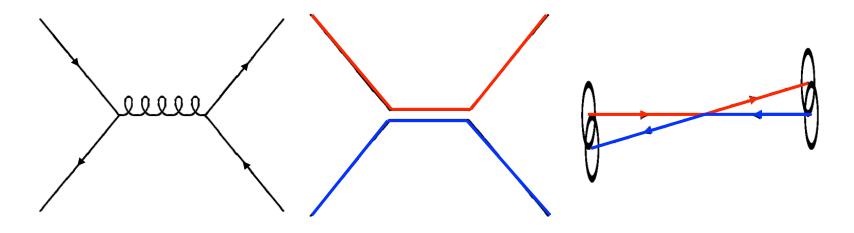


Algorithm identical to final state with $\Delta_i(Q^2, q^2)$ replaced by $\Delta_i(Q^2, q^2)/f_i(x, q^2)$.

Event Generators 1

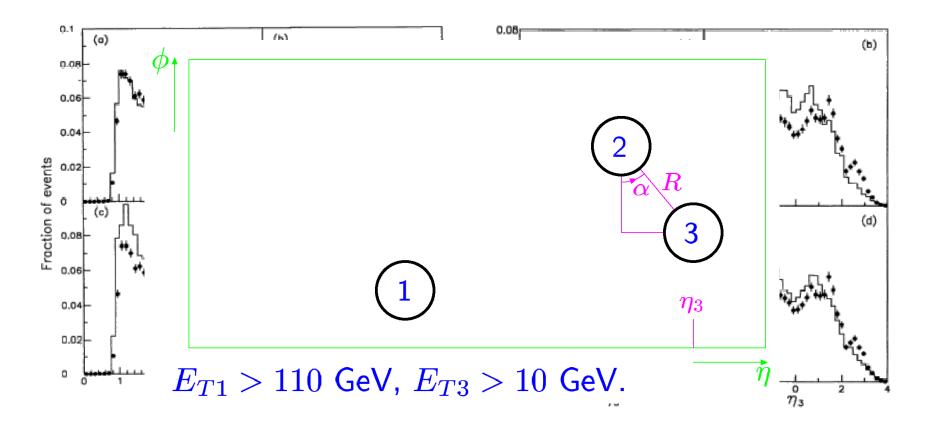
Hard Scattering

Sets up initial conditions for parton showers. Colour coherence important here too.



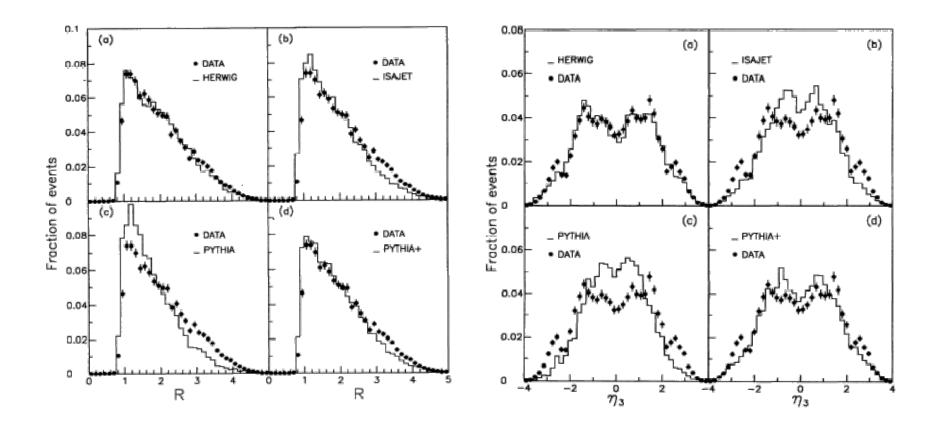
Emission from each parton confined to cone stretching to its colour partner Essential to fit data...

Event Generators 1



Distributions of third-hardest jet in multi-jet events

Event Generators 1

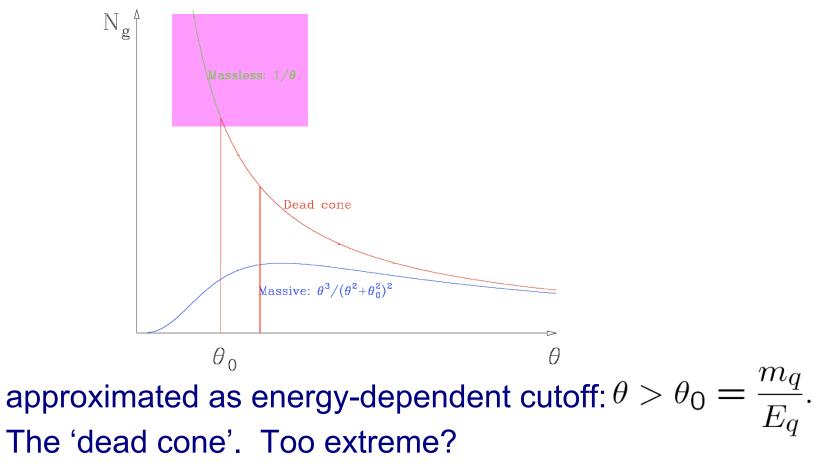


Distributions of third-hardest jet in multi-jet events HERWIG has complete treatment of colour coherence, PYTHIA+ has partial

Event Generators 1

Heavy Quarks/Spartons

look like light quarks at large angles, sterile at small angles:



Event Generators 1

Heavy Quarks/Spartons

More properly treated using quasi-collinear splitting:

 $\mathrm{d}\mathcal{P}_{\tilde{i}\tilde{j}\to ij} = \frac{\alpha_S}{2\pi} \,\frac{\mathrm{d}\tilde{q}^2}{\tilde{a}^2} \,\mathrm{d}z \,P_{\tilde{i}\tilde{j}\to ij}\left(z,\tilde{q}\right),$ $P_{q \to qg} = rac{C_F}{1-z} \left| 1+z^2 - rac{2m_q^2}{z ilde{q}^2} \right|,$ $P_{g \to gg} = C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z (1-z) \right],$ $P_{g \to q \bar{q}} = T_R \left| 1 - 2z \left(1 - z \right) + \frac{2m_q^2}{z \left(1 - z \right) \tilde{q}^2} \right|,$ \rightarrow smooth suppression $P_{\tilde{g}\to\tilde{g}g} = \frac{C_A}{1-z} \left| 1+z^2 - \frac{2m_{\tilde{g}}^2}{z\tilde{q}^2} \right|,$ in forward region $P_{\tilde{q}\to\tilde{q}g} = \frac{2C_F}{1-z} \left[z - \frac{m_{\tilde{q}}}{z\tilde{a}^2} \right],$

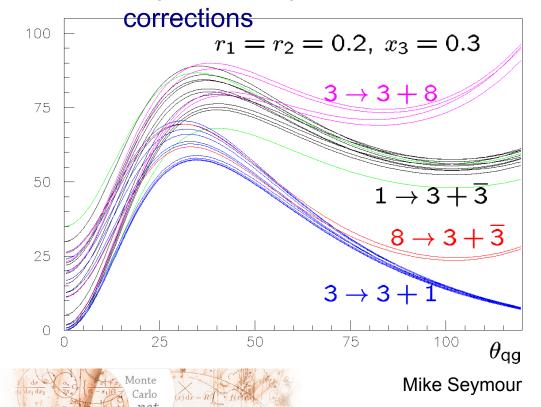
Event Generators 1

Heavy Quarks/Spartons

- Dead cone only exact for
- emission from spin-0 particle, or
- infinitely soft emitted gluon

colour	spin	γ_5	example
$1 \rightarrow 3 + \overline{3}$			(eikonal)
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$Z^0 \to q \overline{q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 1$	$1,\gamma_5,1\pm\gamma_5$	$t \to bW^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$H^0 \to q \overline{q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$t\tobH^+$
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow 0 + 0$	1	$Z^0\to \widetilde{q}\overline{\widetilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 1$	1	$\tilde{q}\to \tilde{q}'W^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow 0 + 0$	1	$H^0 \to \tilde{q} \overline{\tilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 0$	1	$\tilde{q} \to \tilde{q}' H^+$
$1 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\chi \rightarrow q \overline{\tilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\mathbf{\tilde{q}} ightarrow \mathbf{q} \chi$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t \to \tilde{t} \chi$
$8 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{g} \to q \overline{\tilde{q}}$
$3 \rightarrow 3 + 8$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{q} \to q \tilde{g}$
$3 \rightarrow 3 + 8$	$\frac{1}{2} \rightarrow 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t\to \tilde{t}\tilde{g}$

- In general, depends on
- energy of gluon
- colours and spins of emitting particle and colour partner
- \rightarrow process-dependent mass



Event Generators 1

The Colour Dipole Model

Conventional parton showers: start from collinear limit, modify to incorporate soft gluon coherence Colour Dipole Model: start from soft limit

Emission of soft gluons from colour-anticolour dipole universal (and classical):

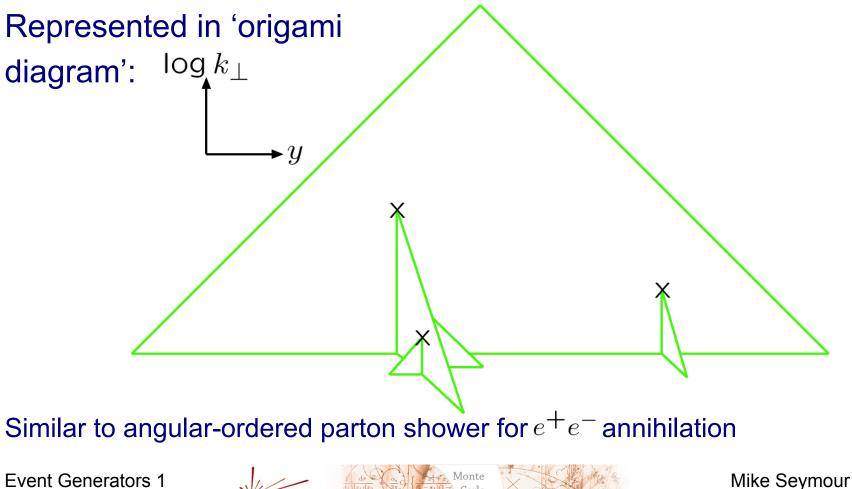
 $d\sigma \approx \sigma_0 \frac{1}{2} C_A \frac{\alpha_s(k_\perp)}{2\pi} \frac{dk_\perp^2}{k_\perp^2} dy, \quad y = \text{rapidity} = \log \tan \theta/2$

Mike Seymour

After emitting a gluon, colour dipole is split:

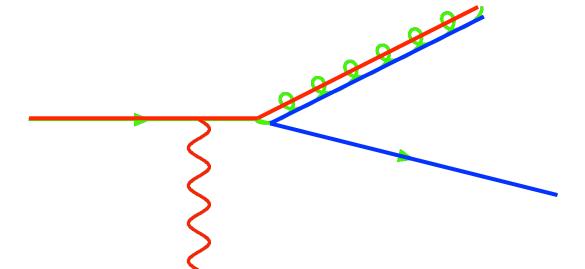
Event Generators 1

Subsequent dipoles continue to cascade c.f. parton shower: one parton \rightarrow two CDM: one dipole \rightarrow two = two partons \rightarrow three



Dipole cascades and colour coherence

Recall:

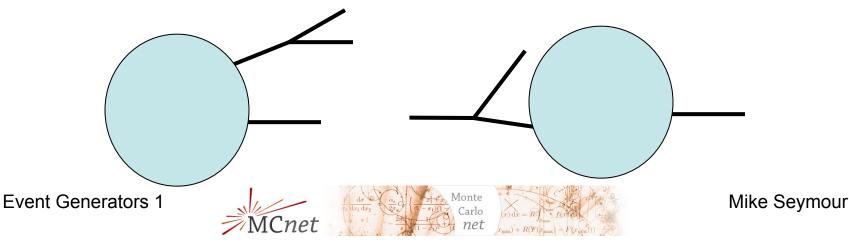


soft wide angle gluon sees the colour of the whole jet ⇒ emitted first in parton shower language but colour of whole jet is carried by emitted gluon ⇒ soft gluon emitted by hard gluon's dipole is emitted by the whole jet

Event Generators 1

Dipole Cascades

- Most new implementations based on dipole picture:
 - Catani & MHS (1997)
 - Kosower (1998)
 - Nagy & Soper (May 2007) DEDUCTOR
 - Giele, Kosower & Skands (July 2007) VINCIA
 - Dinsdale, Ternick & Weinzierl (Sept 2007)
 - Schumann & Krauss (Sept 2007) SHERPA
 - Winter & Krauss (Dec 2007) SHERPA
 - Plätzer & Gieseke (Sept 2009) Herwig++ / Matchbox



Matrix Element Matching

Parton shower built on approximations to QCD matrix elements valid in **collinear** and **soft** approximations

 \rightarrow describe bulk of radiation well \rightarrow hadronic final state

→but ...

- searches for new physics
- top mass measurement
- *n* jet cross sections

• ...

- \rightarrow hard, well-separated jets
- described better by fixed ("leading") order matrix element
- would also like next-to-leading order normalization

-> need matrix element matching Event Generators 1

Supported Programs

- PYTHIA 6.3: p_T-ordered parton showers, interleaved with multi-parton interactions; dipole-style recoil; matrix element for first emission in many processes.
- PYTHIA 8: new program with many of the same features as PYTHIA 6.3, many 'obsolete' features removed.
- SHERPA: new program built from scratch; p_T-ordered dipole showers; multi-jet and NLO matching schemes built in.
- Herwig++: new program with angular ordered parton shower (like HERWIG) plus quasi-collinear limit and recoil strategy based on colour flow; spin correlations. Coming soon: new dipole shower, with multi-jet and NLO matching schemes built in (Matchbox).

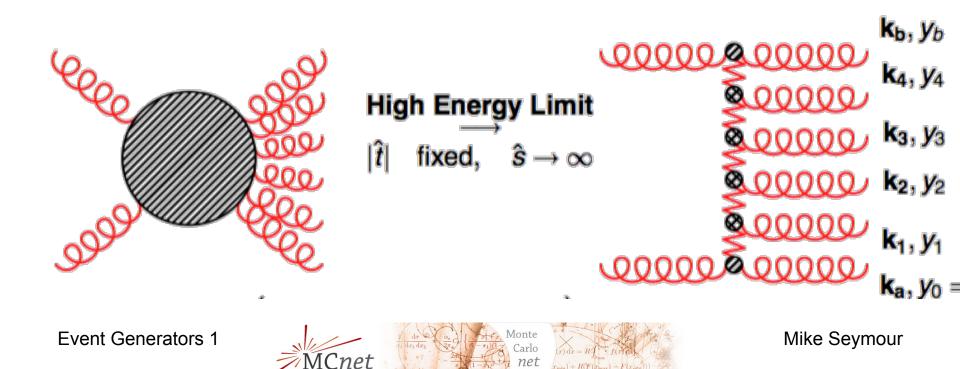
Event Generators 1

Other Programs

- There are also many specialised parton showers that have been developed, but not as part of hadron-level event generators
 - GENEVA
 - DEDUCTOR
 - VINCIA
 - Ariadne
- and also approaches based on high energy QCD evolution
 - Cascade
 - HEJ

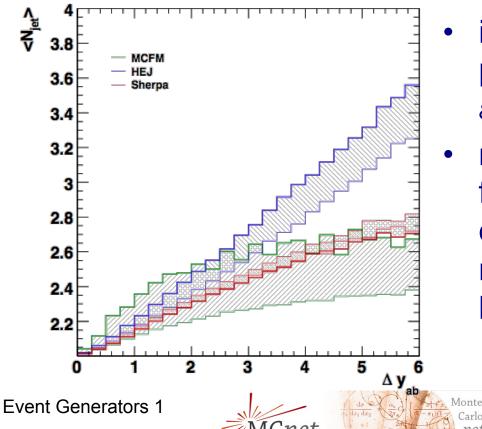
New approaches

- HEJ (Andersson & Smillie) resums rapidity-enhanced (i.e. small-x) terms
- Can be combined with dipole shower (+Lönnblad)



New approaches

 HEJ (Andersson & Smillie) resums rapidity-enhanced (i.e. small-x) terms



- important for Higgs production [Andersen, Campbell & Höche, arXiv:1003.1241]
- mean no. of jets as a function of rapidity distribution between most forward and most backward
 - c.f. VBF cuts/rapidity veto

Summary

- Accelerated colour charges radiate gluons.
 Gluons are also charged → cascade.
- Probabilistic language derived from factorization theorems of full gauge theory.
 Colour coherence is a fact of life: do not trust those who ignore it!
 - but corrections beyond leading colour are non-probabilistic!
- Modern parton shower models are very sophisticated implementations of perturbative QCD, but would be useless without hadronization models...

