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Factorization

e Perturbative QCD works with processes with a
hard scale Q?.

e Fg. p+p — pu + = + X with squared p™ ™~ mass Q7
and rapidity Y.
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e This is an “inclusive” process.

e We need Q% > 1 GeV*>.



Factorized form of the cross
section

parton distribution functions
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R hard scattering function
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e The parton distribution functions are non-perturbative.

e The hard scattering function has a perturbative expansion.
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e We generally choose uz and u% of order Q2.

e Contributions of order 1 GeV~/Q? are neglected.



One scale

e Here there is only one large scale (assuming that
we choose uz ~ uz ~ Q*.)
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e The higher order coefficients h,, are not
particularly large, about the same size as hyg.

e a(uz) is small.

e So perturbation theory works well.



Two scales
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e Fg. p+p — ut + pu~ 4+ X with squared p*p~ mass Q2
rapidity Y, and squared transverse momentum Qi.

do
1 a,b

da’(a, b, Nas b Q27 Q%_? Y, lul%‘)
dQ? dQ? dY

X



Perturbative expansion
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e Now the coefficients depend on Q%/Q? .

e They are proportional to 1/Q4 times logs of Q%/Q7 .
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What if the logarithm is
large?

log”" 1 (Q?%/Q%)
Q%
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e If Q°/Q% > 1, then aq log2(Q2/Qi) may not be small.

e The usefulness of perturbation theory may be destroyed.



This is rather common

e The thrust distribution in eTe~ annihilation for 1 — T < 1.

e A jet cross section defined with a jet radius R
with R < 1.

e The Higgs boson Q2 distribution for Q% <« M3.

e The cross section for a W plus one jet with P; ~ My
and no other jets with P, > ()| where Q| < Mwy.

e The evolution of the coupling and of the parton distributions
with scale.



What should we do?

e We need to sum the large logarithms.



Example with one log per

loop

e The running coupling at scale (Q? is related to
the coupling at scale M2 by

as(Q?) = ag(M2) ZZCnl n(M2) log! (Q? /M2)

n=0 [=0

e This series is not useful if log(Q?/M?%) is large.

e We can try to sum the “leading logs”: those with [ = n.



e The leading logs are
—( Bo\" . n
(@) =) S (2 ) an(h)log" @/
e These sum to
as (M%)
L+ B2 o (M2) 0g(Q? /M)

O‘S(QQ)
e This is useful when as(M?2)log(Q*/Mz) < 1.

e We know more terms, so this can become very accurate.



Two logs per loop

e Return to the Drell-Yan cross section.
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e We need to sum the large logarithms.

e For example:

do 1 oy

dQ2 dY in ~ 00 Qi o Cr 1Og(Q2/Qﬁ_)

X exp (—% CF% 1og2<@2/Qi>>

e This is adapted from Parisi and Petronzio (1979).

e Corrections,
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e The formula

do N 1 ag 5 | 9
dQQ dY in ~ 00 Qﬁ_ o CF lOg(Q /QJ_)
Ol 1
X €XP <—? CFi logz(QQ/Qi)>

sums the “leading logarithms”

log™ 1 (Q*/Q%)
Q1

e This should work if aglog®(Q%/Q?) < 1.
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e But that is a pretty limited range.



How do do better

e The muon pair gets (2 | by recoiling against soft gluons.

e This gives

/dq1 dgs - - - dq,, 5(QJ_—qu)...

e The delta function analysis difficult.



e Parisi and Petronzio (1979) suggested using a Fourier transform:

/dQJ_ elQLb/dCh/dCIz/dCIn 5(QJ—_ZqJ>
B / dgqy e / dgy €797 - / dg, e 9n0 ...

e Take Fourier transforms so that each emission is in b space.
e Multiply.

e Fourier transform back at the end.



e Parisi and Petronzio argued that one can treat all
of the emissions as independent.
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e Then



e The b-space formula

do _ i :
Qzavaqy "~ 7 M) Q/db i
1
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7

reproduces

do 1 as

dQ2dy dQ> " 7° Q2 &
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if we keep only the leading logs, log(Q*/Q7 ).

e The b-space formula gives a finite cross section for ()| — 0.

e The (@) -space formula gives zero for Q| — 0.
e It seems plausible that the b-space formula is better.

e It is not obvious how much better the b-space formula is.



A more exact analysis

Collins, Soper, Sterman (1985)

e Use the b-space idea.

e Work at all orders in QCD.

e Use a physical gauge. (A better treatment uses Feynman
gauge; see J.C. Collins, Foundations of Perturbative QQCD.)



e Begin with an analysis of what integration regions
for parton momenta are important.

e Soft-collinear effective theory (SCET) starts this way.

e Develop differential equations for the pieces.



e The QCD result for Q4 < Q-.

do
dQ)? dY sz
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e A, B, and C have perturbative expansions.
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e Need some nonperturbative input for very large b?.



e [Look at

exp ( / ok :A<as<ki>>log (Q—) y B(asu«i)):
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_ 4 as(Q?)
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e This gives

2
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e This agrees with Parisi and Petronzio.




e [.ook some more.

exp ( /Q2 @ :A(as(ki))log (Q_2> + B(o (k3

o2 k2

2
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e We get
n—+1
exp( Zoz (Q%) Zlog Q2b2/02))

e Only one power of log for each new power of as.




Accuracy of approximation

- ( / T o) log (,ff—) + B<a8<ki>>:)

2
C’Q/bQ kJ_ |

o If we know AV, A2 and B, then unknown terms

are of order as(Q?) [as(Q?) log(Q*b* /C4)]™.

e Unknown terms are small as long as ag(Q?) log(Q%b*/C?) < 1.

e We need the exponent for b* < b2 where

0. (0?) log?(Q2b2/C2) = few.

e So for large enough Q?, we have a result that is accurate
over the entire needed range of b*.
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e Improvements:

e Match to a non-perturbative model at large b°.

: 2
e Match to fixed order perturbation theory at large )7 .




Resbos

e These formulas are implemented in RESBOS by

C.P. Yuan, Csaba Balazs, and Pavel Nadolsky:.
e See http://hep.pa.msu.edu/resum/

Coordinated

Theoretical- QT resu m mation po .-tal

E xperimental study on

Quantum chromodynamics at MiChlgan State UnlverSity

A collection of resources on transverse momentum resummation

Online plotter of resummed cross sections @ Home @ Theory overview s Computer programs and usage policy » Particle processess Our publications e Bibliography

[ cTEQ6.6 grids for W, Z, H,

B T Transverse momentum (or Q) resummation is a powerful method to predict differential distributions of elementary particles in quantum

chromodynamics. Its main features and differences from Monte-Carlo showering methods are discussed in the brief overview of resummation theory.

ReaEos wnt.h PDF reweighting Our group is actively involved in the development of transverse momentum resummation methods in essential collider processes. This page collects
and output into ROOT ntuples . . . . . . . .
using FROOT various resources for computation of resummed cross sections, including publicly distributed computer codes, references to journal papers

blished b , and rel t bibli hy.
Some sample input files for publs y our group, and relevant bibliography

various processes can be found
here.

Computer programs

A quick plot of the resummed Qr distribution for a given invariant mass and rapidity can be made with the help of the online plotter of resummed
cross sections, which provides an intuitive user interface and produces figures in Postscript and GIF formats. For more detailed studies of resummed

Online Plotter of ResBos

Download the latest resummation

code (Fortran) cross sections, a ResBos family of Fortran programs is publicly available.
* Ilicsgos (f’ P, CP versions) « ResBos -- calculation of resummed initial-state contributions in unpolarized Drell-Yan-like processes at hadron-hadron colliders. At present, two
#» ResBos-

branches of the ResBos code are supported. They are mostly compatible with one another, but optimized for different tasks:
o branch C -- original ResBos version, supported by Csaba Balazs (old versions);
o branch P -- the ResBos version adapted for various CTEQ studies, supported by Pavel Nadolsky.
o branch CP -- the ResBos version adapted for various CTEQ studies, supported by C.-P. Yuan. The needed grid files are here.
* ResBos-A -- a program spawned by ResBos that includes final-state NLO electromagnetic contributions in W boson production, supported by

e RhicBos
@ ResBos for SIDIS
Why different versions?

Prolc_ox@ssw C.-P. Yuan. The inputs for this program are not compatible with ResBos inputs and can be downloaded here. More grid files are available below.
o PP W*X « RhicBos -- ResBos optimized for polarized hadron-hadron collisions at the Relativistic Heavy Ion Collider; supported by Pavel Nadolsky.
~ pp = 729X o ResBos-DIS -- a program for computation of resummed hadronic distributions in semi-inclusive deep inelastic scattering at lepton-hadron

. pp’ = TEX colliders; supported by Pavel Nadolsky.



Parton shower approach

e We will study parton shower event generators in this school.

e These typically start at a
hard interaction.

e The participating partons are
really jets. But their structure
is unresolved.

e Then they move to successively

softer interactions, resolving more.



e Parton shower event generators contain the matrix

elements for soft gluon emissions.

e S0 maybe they can correctly sum logs of ) |
in the Drell-Yan process.



e Zoltan Nagy and I investigated this.

e We considered a virtuality ordered parton shower.

e We developed differential equations for what the shower does

and solved the equations analytically.



e Result for the general structure:

do
dQ?dY dQ= N J Exponentiation
1
4t

XZ/ dna/ an faya(a, C*/6%) fo,8(1m, C*/b7)
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e Note: seemingly minor details of the shower algorithm
matter for this.



e Result for the coefficients:




Numerical comparison

e Compare with parton shower DEDUCTOR (Nagy-Soper 2014).

e Compare DEDUCTOR (no hadronization),PyTIA (hadronization
turned off ), & RESBOS (with non-perturbative functions).

e Look at distribution of Pr of 0040
ete pairs with M > 400 GeV. T Ak ResBos
<
o [ Ndprp(pr) =1. =
E 0 01% _—PYTHIA
e A parton shower should get

this right except for soft effects 0006080 00
at Pr < 10 GeV. pr (GeV)



Other approaches

e There are many cases with two large logarithms per loop.

e Some can be summed to suitable accuracy.

e Some cannot.

e For the Drell-Yan ()| distribution, there are many variations.

e Some authors prefer to give results directly as functions of Q4 .



e Soft-collinear effective theory (SCET) provides a
popular method of summing large logarithms.

o [g.

T. Becher and M. Neubert,
“Drell-Yan Production at Small g7, Transverse Parton
Distributions and the Collinear Anomaly,”

Eur. Phys. J. C 71, 1665 (2011)
larXiv:1007.4005 [hep-ph]].

e Banfi, Salam, and Zanderighi (2002) have developed
a fairly general method for summing large logarithms.

e For a review of direct QCD methods, see

(. Luisoni and S. Marzani,
“Resummation in QCD,”
arXiv:1505.04084 |[hep-ph].



