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Much learned

* QCD

e Electroweak
physics

e Higgs

e PDFs

e Jets

e Matching

e Substructure
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Searches also rely on MC

4 Monte Carlo data samples

Monte Carlo (MC) data samples are used to develop the analysis, optimise the selections, estimate
backgrounds and assess sensitivity to specific SUSY signal models. The SM background processes
considered are those which can lead to events with jets and missing transverse momentum. The
processes considered together with the MC generators, cross-section calculations and parton distri-
bution functions (PDFs) used are listed in table 1. The y+jets MC data samples are used to estimate

Even for “data-driven” methods, MC often used to test
assumptions

MC almost always used in analysis design and optimisation

MC central to interpretation
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Our technology has also moved on...

Since the main background for SUSY is SUSY itself, it is essential to generate the whole SUSY
cross section, not just specific channels of interest. Typically, samples of 10° or more events have
been generated for each point studied here using either ISAJET [20-15] or SPYTHIA [20-16].
Large samples of Standard Model events are also needed to assess potential backgrounds. Such
large event samples necessitate using a fast detector simulation rather than a detailed, GEANT-
based one. Most of the results given here are based on ATLFAST [20-17] or comparable particle-
level detector simulations. These correctly describe the gross resolution and acceptance of AT-
LAS but not the effects of resolution tails, cracks, etc. The backgrounds for SUSY signatures after
reasonable cuts appear however to be dominated by real physics events and not by such detec-
tor effects.

ATLAS physics TDR 1999
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Our technology has also moved on...

Since the main background for SUSY is SUSY itself, it is essential to generate the whole SUSY
cross section, not just specific channels of interest. Typically, samples of 10° or more events have
been generated for each point studied here using either ISAJET [20-15] or SPYTHIA [20-16].
Large samples of Standard Model events are also needed to assess potential backgrounds. Such
large event samples necessitate using a fast detector simulation rather than a detailed, GEANT-
based one. Most of the results given here are based on ATLFAST [20-17] or comparable particle-
level detector simulations. These correctly describe the gross resolution and acceptance of AT-
LAS but not the effects of resolution tails, cracks, etc. The backgrounds for SUSY signatures after
reasonable cuts appear however to be dominated by real physics events and not by such detec-
tor effects.

“large MC samples of order 10,000 events”

ATLAS physics TDR 1999

January 2016 Alan Barr 11



Our technology has also moved on...

Since the main background for SUSY is SUSY itself, it is essential to generate the whole SUSY
cross section, not just specific channels of interest. Typically, samples of 10° or more events have
been generated for each point studied here using either ISAJET [20-15] or SPYTHIA [20-16].
Large samples of Standard Model events are also needed to assess potential backgrounds. Such
large event samples necessitate using a fast detector simulation rather than a detailed, GEANT-
based one. Most of the results given here are based on ATLFAST [20-17] or comparable particle-
level detector simulations. These correctly describe the gross resolution and acceptance of AT-
LAS but not the effects of resolution tails, cracks, etc. The backgrounds for SUSY signatures after
reasonable cuts appear however to be dominated by real physics events and not by such detec-
tor effects.

smeared truth as detector simulation

ATLAS physics TDR 1999

January 2016 Alan Barr 12



Our technology has also moved on...

Since the main background for SUSY is SUSY itself, it is essential to generate the whole SUSY
cross section, not just specific channels of interest. Typically, samples of 10° or more events have
been generated for each point studied here using either ISAJET [20-15] or SPYTHIA [20-16].
Large samples of Standard Model events are also needed to assess potential backgrounds. Such
large event samples necessitate using a fast detector simulation rather than a detailed, GEANT-
based one. Most of the results given here are based on ATLFAST [20-17] or comparable particle-
level detector simulations. These correctly describe the gross resolution and acceptance of AT-
LAS but not the effects of resolution tails, cracks, etc. The backgrounds for SUSY signatures after
reasonable cuts appear however to be dominated by real physics events and not by such detec-
tor effects.

2 -> 2 MC for jets backgrounds

ATLAS physics TDR 1999
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Our technology has also moved on...

Since the main background for SUSY is SUSY itself, it is essential to generate the whole SUSY
cross section, not just specific channels of interest. Typically, samples of 10° or more events have
been generated for each point studied here using either ISAJET [20-15] or SPYTHIA [20-16].
Large samples of Standard Model events are also needed to assess potential backgrounds. Such
large event samples necessitate using a fast detector simulation rather than a detailed, GEANT-
based one. Most of the results given here are based on ATLFAST [20-17] or comparable particle-
level detector simulations. These correctly describe the gross resolution and acceptance of AT-
LAS but not the effects of resolution tails, cracks, etc. The backgrounds for SUSY signatures after
reasonable cuts appear however to be dominated by real physics events and not by such detec-
tor effects.

Boson + (Jets only from Parton Shower)

ATLAS physics TDR 1999
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Standard Model Production Cross Section Measurements

Status: June 2016
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High Precision MC http://arxiv.org/pdf/1406.5375v2.pdf

The inclusive top quark pair (¢f) production cross-section «;z has been measured in proton—proton
collisions at /s =7 g tt events with
an opposite-charge m (t) ? the 2011 7 TeV
dataset correspondi 2 . - ruataset of 20.3fb~".
The numbers of events with exactly one and exactly two b-tagged jets were counted and used to
simultaneously determine «,; and the efficiency to reconstruct and b-tag a jet from a top quark decay,
thereby minimising the associated systematic uncertainties. The cross-section was measured to be:

o =1829+3.1+424+3.6+3.3pb (/5 =T7TeV) and
oy =2424+ 1.7+ 5.5+ 7.5+4.2pb (/5 = 8TeV),

where the four uncertainties arise from data statistics, experimental and theoretical systematic effects,
knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with
recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corre-
sponding to the experimental acceptance of the |leptons are also reported, together with the ratio of
cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were
used to determine the top quark pole mass via the dependence of the theoretically predicted cross-
section on mP°* giving a result of mP*° = ITE.BZEZE GeV. By looking for an excess of tf production
with respect to the QCD prediction, the results were also used to place limits on the pair-production
of supersymmetric top squarks #; with masses close to the top quark mass, decaying via t; — "
to predominantly right-handed top quarks and a light neutralino %Y, the lightest supersymmetric par-
ticle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95%
confidence level.

January 2016 Alan Barr 17
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ngh PrEC|S|0n MC http://arxiv.org/pdf/1406.5375v2.pdf

The inclusive top quark pair (tf) production cross-section a has been measured in proton—proton
collisions at +/s = 7TeV and /s = & TeV with the ATLAS experiment at the LHC, using tf events with
an opposite-charge «u pair in the final state. The measurement was performed with the 2011 7 TeV
dataset corresponding to an integrated luminosity of 4.6fo~' and the 2012 8 TeV dataset of 20.3fb~".
The numbers of events with exactly one and exactly two b-tagged jets were counted and used to
simultaneously determine «,; and the efficiency to reconstruct and b-tag a jet from a top quark decay,
thereby minimising the associated systematic uncertainties. The cross-section was measured to be:

o =1829+3.1+42+4+3.6+33pb(y/s=7TeV) and
o =2424 £ 1.7+ 55+ 7.5+ 42pb (/s =8TeV),

used to determine the top quark pole mass via the dependem}e of the th-a:::»rse:tm:alI:.nr predicted cross-

section on mP°*® giving a result of mP?® = 1?2.9: '« GeV. By looking for an excess of #f production

with respect to the QCD
of supersymmetric top sc
to predominantly right-ha
ticle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95 %
confidence level.
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Technology is nothing. What's important is
that you have a faith in people, that they're
basically good and smart, and if you give
them tools, they'll do wonderful things with

them.

Steve Jobs





Presenter
Presentation Notes
The shoulders of giants


So whatdo | do...?



So whatdo | do...?

Be skeptical of your predecessors

and

Impromve :chings!
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| never thought this would happen

Results are reported of a search for new phenomena. such as supersymmetric particle pro-
duction. that could be observed in high-energy proton—proton collisions. Events with large
numbers of jets. together with missing transverse momentum from unobserved particles. are
selected. The data analysed were recorded by the ATLAS experiment during 2015 using
the 13 TeV centre-of-mass proton—proton collisions at the Large Hadron Collider, and cor-
respond to an : The search selected events with various
jet multiplicitiesffrom > 7 to > 10 jets, and with various b-jet multiplicity requirements to
enhance sensitivity. No excess above Standard Nlodel expectations is observed. The results
are interpreted within two supersymmetry models, where g]uln-:: masses up to 1400 GeV are
excluded at 95% confidence level, significant

. "
AT T 11“ atim

Search W|th >=10 jets!

http://arxiv.org/pdf/1602.06194v3.pdf
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CS/PAPERS/SUSY-2015-07/
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Better kinematic variables?
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http://arxiv.org/pdf/1105.2977.pdf

Philosophy behind these things

White board



So whatdo | do...?



So whatdo | do...?

Question your assumptions

and

Measure things!

aaaaaaaaaaaaaaaaaaa
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JETS + MISSING MOMENTUM

The signal...

aaaaaaaaaaaaaaaaaaa



JETS + MISSING MOMENTUM

Background?

Z 2> Vv +jets

> neutrino
> miss
IDT

neutrino

32



JETS + MISSING MOMENTUM

Background?
Z 2> uu + jets

muon

aaaaaaaaaaaaaaaaaaa



When does this break down?



JETS

From collisions

Jets:

Had. Calorimeter
E.M. Calorimeter
Tracks from vertex
In-time

b,c quark jets
= can decay
to neutrinos
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JETS + MISSING MOMENTUM

Measurements

Jets:
A¢ cut

Reduce:

Had. Calorimeter
E.M. Calorimeter
Tracks from vertex

Measure remainder
at small A

36



JETS + MISSING MOMENTUM

From cosmics

Reduce by:

(a) requiring tracks
with jets

(b) look for muon
hits

Measure remainder:
(@) no beam
(b) timing 37




JETS + MISSING MOMENTUM

From beam halo

Reduce by requiring tracks with jets
Measure remainder with single beam / tlmmg

anuar y 2016 Alan Barr



JETS + MISSING MOMENTUM

Calorimeter noise

Reduce by
requiring tracks
with jets

Measure remainder
(a) no beam
(b) timing
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It’s very easy to get it wrong...
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...and getting easier (to get it wrong)
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A loose cable...

“ AND THE BARTENDER SAYS WEDONTALLOW HEIITHIHI]S IN HERE
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Something goes bump in the night...
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Lies, damn lies, and statistics...
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Figure 2. Sum spectrum of the "®Ge detectors Nr. 1,2,3,5 over the period August 1990 to

May 2000, 46.502kgy. The curve results from Bayesian inference in the way explained in
the text. It corresponds to a half-life T9%,=(0.75 - 18.33)x 10%° y (95% c.1.).

http://arxiv.org/pdf/hep-ph/0201231v1.pdf
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With great power...

- POWER, DECEIT AND THE
ULTIMATE EXPERIMENT

H=R

AUBES

GARY

Alan Barr
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6 copies at CERN library – contrary to rumours of being banned at CERN 
http://cds.cern.ch/record/109431/holdings?ln=en 


It has an impact...
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Unexpected things do happen
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Lots i questlons...,

":What is. Dark Matter'-’ e ) »

'_'Why is |t stable? Is it even stable"

~ What is Dark Energy? , - o - o :
“What Sha]ee§ the nggs potentlal? " 5

_.1 E

" -Afe there more nggs bosons? e

Does SUSY solve the naturglness problem7

" If so, ! whére are the spa‘mdes htdlng'-’

If not what does'-’ v‘ T R P ki

Are neutfinos thelr own antl par:r;cies'-’ A

* Are there other forces? . . -
What causes the baryen asymmetry'-’
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http://arxiv.org/pdf/1605.09502.pdf
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Run-2 searches already expanding the reach of the LHC
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Select appropriate models
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