Tutorial on Parton Showers and Matching

CTEQ/MCnet School 2016

1 Introduction

In this tutorial we will discuss the construction of a parton shower, matrix-element corrections, and
matching at next-to-leading order. At the end, you will be able to run your own parton shower for
ete™ —hadrons at LEP energies and compare its predictions to results from the event generator Sherpa
(using a simplified setup). You will also have constructed your first MCAQNLO and POWHEG generator.

2 Getting started

Change to the tutorial directory
cd “/tutorial/ps/

For simplicity, this tutorial uses Python. If you are unfamiliar with Python, think of it as yet another
scripting language, such as bash, but way more powerful. A peculiar feature of Python, and indeed
its biggest weakness, is that code is structured by indentation. That means you need to pay careful
attention to all the spaces in this worksheet. Missing spaces, or additional ones may render your code
entirely useless at best. The worst case scenario is that it will still run, but produce the wrong answer.

Some important ingredients of any QCD calculation have been predefined for you. This includes four
vectors and operations on them, the running coupling, a,, and a particle container. We also provide an
implementation of the analysis, which you will use at the end of the tutorial to compare predictions with
Sherpa. All this so you can fully focus on your parton shower!

Get started by creating a file called shower.py. First we need to import the predefined methods

import math as m
import random as r

from vector import Vec4d
from particle import Particle, CheckEvent
from qcd import AlphaS, NC, TR, CA, CF

This will import all above mentioned classes, some important QCD constants, and functions from the
math and random library, which come with the python installation itself.
The basic ingredients of parton showers are

e the splitting functions,
e the splitting kinematics,
e the veto algorithm.

Let us tackle them one by one.

3 The splitting functions

We will use the splitting functions from Eq. (3.22) in arXiv:1411.4085. First we define an abstract base
class, which allows to store the flavors of the splitting function

class Kernel:

def __init__(self,flavs):
self.flavs = flavs

Next we define the first real splitting function, the ¢ — qg kernel.

class Pqq (Kernel):

def Value(self,z,y):
return CF*(2./(1.-zx(1.-y))-(1.+2))

def Estimate(self,z):
return CFx2./(1.-z)

def Integral(self,zm,zp):
return CF#2.*m.log((1.-zm)/(1.-zp))

def GenerateZ(self,zm,zp):
return 1.+(zp-1.)*m.pow((1l.-zm)/(1.-2zp),r.random())

This class has several member functions needed at different stages of the event generation. The first is
called Value, it is used to compute the actual value of the kernel once the full final-state kinematics is
known in terms of two variables z and y, which are defined in terms of the quark momentum, p;, the
gluon momentum, p;, and a “spectator” momentum, py, as

.= DiDPk
PiPx + PPk

Y= Pip; ()
Dipj + DiPk + DDk

For now, you can think of them as two of the three parameters that define the kinematics of the gluon
emission. Ask yourself why the splitting function does not depend on a third parameter.

The next function is Estimate. It is used to overestimate the splitting kernel during the veto algo-
rithm. If you are unfamiliar with the veto algorithm, you may want to read about it in Sec. 4.2 of
hep-ph/0603175. In the Estimate function, we have dropped the dependence on y, and we have approx-
imated the numerator of the splitting function by 2. Think about how the veto algorithm works and ask
yourself why the approximation is valid.

The following function simply defines the integral of the overestimate, needed for the selection of a
point in the veto algorithm. It depends on the minimal and maximal values of z that can be attained
while conserving four-momentum in the branching. Can you derive these boundaries in terms of the
transverse momentum? Hint: The kinematics are listed in Eq. (2).

The function GenerateZ selects a value for z between the minimum and the maximum, following the
probability distribution given by Estimate. Together with the point selected for the evolution variable
of the shower, and an azimuthal angle, this fixes the kinematics needed for constructing the emission.

You are now in a position to construct the two remaining types of splitting functions, for ¢ — gg and
for ¢ — qq splittings. Name the corresponding classes Pgg and Pgq. If you are unsure about how to
implement them, you may peek at the file . shower.py, which contains a reference implementation. Did
you get the color factors straight? No? Ask your tutor, why!

4 The kinematics

Let us now start constructing the parton shower itself.

class Shower:

def __init__(self,alpha,t0):
self.t0 = t0
self.alpha = alpha
self.alphamax = alpha(self.t0)
self .kernels = [Pqq([fl,f1,21]) for fl in [-5,-4,-3,-2,-1,1,2,3,4,5]]
self.kernels += [Pgq([21,f1,-f1]) for f1l in [1,2,3,4,5]]
self.kernels += [Pgg([21,21,21])]

This is simply the constructor, which takes two arguments: The strong coupling, and a cutoff scale. Both
are stored in the shower object, and a maximum of the strong coupling is computed. We also instantiate
a list of splitting kernels, where the ¢ — gg and g — ¢ kernels come in multiple copies, one for each
possible quark flavor.

Next we set up the parton-shower kinematics. In terms of the above defined variables, z and y, the
momenta of the three partons involved in a branching process can be calculated as

pi = 2Py + (1 — 2)ypr + k1
pj = (1 —2)pij + zypr — kL (2)
e = (1 —y)Dk

The momenta p;; and pj, are the emitter and spectator momenta before the branching process, and &
is a transverse momentum that fulfills the relation k2 = 2p;;pr y z2(1 — 2). This is implemented in our
parton shower as follows

def MakeKinematics(self,z,y,phi,pijt,pkt):
Q = pijt+pkt
rkt = m.sqrt(Q.M2() *y*zx(1.-2z))
ktl = pijt.Cross(pkt)
if kt1.P() < 1.e-6: ktl = pijt.Cross(Vec4(0.,1.,0.,0.))
ktl *= rkt*m.cos(phi)/kt1.P()
kt2cms = Q.Boost(pijt).Cross(ktl)
kt2cms *= rkt*m.sin(phi)/kt2cms.P()
kt2 = Q.BoostBack(kt2cms)
pi = z#pijt + (1.-z)*y*pkt + ktl + kt2
pj = (1.-z)*pijt + zxy*pkt - ktl - kt2
pk = (1.-y)*pkt
return [pi,pj,pk]

Note that we have added an azimuthal angle, called ¢, to the arguments of this function. It will be
selected at random between 0 and 27. Can you find out why we need to boost kt2? Why is there a
check on the magnitude of kt17?

In any branching process, we also need to decide on the new color flow of the final state. The
conventional approach is to use the leading color approximation and insert a new color for each emitted
gluon, while the flow in g — ¢q splittings is defined by color conservation. This is implemented by the
following method:

def MakeColors(self,flavs,colij,colk):
self.c += 1
if flavs[0] != 21:
if flavs[0] > O:
return [[self.c,0], [colij[0],self.c]]
else:
return [[0,self.c], [self.c,colij[1]]]

else:
if flavs[1] == 21:
if colij[0] == colk[1]:
if colij[1] == colk[0] and r.random()>0.5:
return [[colij[0],self.c], [self.c,colij[1]]]
return [[self.c,colij[1]], [colij[0],self.c]]
else:
return [[colij[0],self.c], [self.c,colij[1]]]
else:
if flavs[1] > O:
return [[colij[0],0], [0,colij[11]]
else:
return [[0,colij[1]], [colij[0],0] 1]

The lists colij and colk represent the colors of the emitter and spectator parton in a bi-fundamental
representation, where the first item is the “color” (3) and the second is the “anti-color” (3). The return
value is a list of color assignments for the two daughter partons after the branching. Prove that the
above method covers all possible parton splittings flavs[0] — flavs[1] flavs[2].

5 The veto algorithm

Now we code the heart and soul of any parton shower: The veto algorithm. The basic idea is to generate
ordering variables (which we call t) according to the estimated branching probability, and to accept the
point generated in ¢, z and ¢ according to the ratio between true branching probability and overestimate.
So first of all we need to loop over all possible values of ¢ that are generated:

def GeneratePoint(self,event):
while self.t > self.tO:

Next we set the starting value to the cutoff scale
t = self.t0
We iterate over all splitter-spectator pairs that are adjacent in color space

for split in event[2:]:
for spect in event[2:]:
if spect == split: continue
if not split.ColorConnected(spect): continue

And we iterate over all kernels that can branch the splitter into two

for sf in self.kernels:
if sf.flavs[0] != split.pid: continue

We need to compute the z-boundaries in terms of the ordering variable and the maximally available
energy, which is given by the invariant mass of the splitter-spectator pair. In order to do so, we need
to interpret the ordering variable in terms of kinematical quantities. We choose to order our shower
in transverse momentum, therefore ¢ is related to z and y as t = 2p;;pry2(1 — 2), leading to 24 =
(1£+/1—2ty/(ps;p))/2. If the allowed z-range is empty, we skip this pair

m2 = (split.mom+spect.mom).M2()
if m2 < 4.*self.t0: continue
zp = .5*%(1.+m.sqrt(1.-4.*self.t0/m2))

Next we generate a trial emission using Eq. (4.9) in hep-ph/0603175. To keep things simple, we over-
estimate both the splitting function, and the strong coupling, using the value we pre-calculated in the
constructor of our shower

g = self.alphamax/(2.*m.pi)*sf.Integral(l.-zp,zp)
tt = self.t*m.pow(r.random(),1./g)

If the emission is the one with highest ordering variable, we memorize its parameters

if tt > t:
t = tt
s = [split, spect, sf, m2, zp]

The above method lets all splitter-spectator pairs and all splitting functions compete with each other by
generating individual values of t. Can you explain why the result is the same as if we had considered the
overall integral and then selected one of the branchings according to their relative contribution?

Now that we found the “winner” in the branching competition, we can construct the splitting kine-
matics. First we update the current state of the shower. That is, if we happen to veto the emission, the
next trial emission must start at the current value of ¢, not at the original one.

self.t = t

There is a chance that no winner was found at all. In this case the shower must terminate. Otherwise
we can go ahead and generate a value for z

if t > self.tO:
z = s[2] .GenerateZ(1.-s[4],s[4])

Using both z and ¢t we can compute y. This requires again the interpretation of the evolution variable
in terms of a kinematic quantity. We choose to order our shower in transverse momentum, therefore ¢ is
related to z and y as t = 2p;;pr y 2(1 — 2)

y = t/s[3]/z/(1.-2)

The emission may still not be kinematically possible, therefore we need to check the value of y (Can you
think of a reason why y > 1 could happen?)

if y < 1.:

Next we perform the accept/reject procedure. The true value of the splitting function is computed
together with the value of the strong coupling, taken at the transverse momentum of the branching.
We divide by the corresponding estimates. This defines the weight which is used for acceptance test
against a random number. Note: The additional term (1 — y) is the phase-space factor from Eq. (5.20)
in hep-ph/9605323.

w = (1.-y)*self.alpha(t)/self.alphamax
w *= s[2] .Value(z,y)/s[2] .Estimate(z)
if w > r.random():

We finally obtained a valid phase space point! Now we pick a value for the azimuthal angle, and we
construct the splitting kinematics and the color flow. A new particle is created and inserted into the
event record, while splitter and spectator are updated with their new kinematics and (in the case of the
splitter) their new color.

phi = 2.*m.pi*r.random()

moms = self.MakeKinematics(z,y,phi,s[0].mom,s[1].mom)
cols = self.MakeColors(s[2].flavs,s[0].col,s[1].col)
event.append(Particle(s[2].flavs[2] ,moms[1],cols[1]))
s[0] .Set(s[2].flavs[1] ,moms[0],cols[0])

s[1] .mom = moms[2]

We’re done with one emission!

return

This was the hardest part. Now we simply iterate the branching procedure in order to resum logarithmic
corrections from the hard scale of the problem down to the infrared cutoff. This is implemented by the
Run method below

def Run(self,event,t):
self.c =1
self.t = t
while self.t > self.tO:
self.GeneratePoint (event)

We finally need to use our shower. Let us write a simple test program

import sys
from matrix import eetojj
from durham import Analysis

alphas = AlphaS(91.1876,0.118)
hardxs = eetojj(alphas)

shower = Shower (alphas,t0=1.)
jetrat = Analysis()

r.seed(123456)
for i in range(10000) :
event, weight = hardxs.GenerateLOPoint ()
t = (event[0] .mom+event[1].mom) .M2()
shower.Run(event,t)
if not CheckEvent(event):
print "Something went wrong:"
for p in event:
print p
sys.stdout.write(’\rEvent {0}’ .format(i))
sys.stdout.flush()
jetrat.Analyze(event,weight)
jetrat.Finalize("myshower")
print ""

Several new aspects of event generation come into play at this point. One is the generation of hard
configurations using a matrix-element generator. We will not cover the related Monte-Carlo methods
in this tutorial, but if you are interested, you can have a look at the file matrix.py, which contains a
full-fledged ME generator for eTe™ — ¢ at fixed beam energy.

We instantiate the running coupling at two-loops with a reference value of as(myz) = 0.118, and we
set the parton-shower cutoff to 1 GeV.

We generate 10000 events. They are checked for color and momentum conservation and analyzed using
a Durham jet algorithm. The results of the analysis will be stored in a file called myshower.yoda. The
histograms can be plotted and viewed using

rivet-mkhtml myshower.yoda
firefox plots/index.html

You may be interested in a comparison between the very simple code you just created and a state of
the art parton-shower program. You can either generate the corresponding results yourself with Herwig,
Pythia or Sherpa (using the Rivet analysis LL_JetRates), or you can use results from Sherpa that were
generated with parameter settings analogous to those that you have been using above

rivet-mkhtml -s --mc-errs -c plots.conf Sherpa.yoda myshower.yoda

Congratulations! You just coded your first final-state parton shower.

6 Matrix element correction

In order to improve the radiation pattern of the hardest parton shower emission, we derive a correction
to our splitting functions from the spin-averaged squared matrix element for v* — ¢gg. If we denote
the quark, anti-quark and gluon momentum by pi, p2 and ps3, and define s;; = 2p;p;, the ratio to the
v* — qq squared matrix element reads

‘Mqtig|2
|Mq6‘2

(: 2
= 8ma; Cp (S% + 215 + 72812@ > . 3)

513 523 513523

Convince yourself that, using this expression, the corrective weight is given by

(1—x)<(1—x)2+<1fz>2>
1—x(1+z)+x2<z+(1iz>2> ;

We implement this in our parton shower using the following function

def MECorrection(self,z,y):
x = (1.-2)*(1.-y)
num = (1.-x)*(pow(l.-x,2)+pow(x/(1.-2),2))
den = 1.-x*(1.+z)+x*x*(z+pow(z/(1.-2),2))
return num/den

The correction is applied in addition to the standard acceptance weight. We need to ensure that events
with more than two partons are unaltered, hence we insert this statement right before the accept/reject
step.

if len(event)==4:
w *= self.MECorrection(z,y)

Make sure no additional modifications are necessary. If you are unsure what to check for, ask your tutor.

7 POWHEG matching

Integrating the matrix element in Eq.(3) over the real-emission phase space in 4 — 2¢ dimensions gives

g2 € 2

dolS) o (u2) (2 34+2L 19
—499 _ C R Rt
dogg 27

—772+3L+L2> , (5)
where L = log(u?/s). The corresponding virtual corrections are given by

g2 €

dagg as(1?) (2 3+2L
—aag _ T\ o
dogg 2m

—8+772—3L—L2>. (6)

We use these analytic expressions to implement a B-function for our POWHEG simulation in matrix.py

def GeneratePOWHEGPoint (self):
lo = self.GeneratePoint()
mu = self.ecms
1 = m.log(mu*mu/(1o[0] [2] .mom+10[0] [3] .mom) .M2())
V=1[-2., -3. - 2.%1, -8.+m.pi*m.pi - 3.*1 - 1x1]
I=1[2.,3. +2.%1, 19./2.-m.pi*m.pi + 3.*1 + 1x1]
if V[0]+I[0] !'= 0O.:

print "Pole check failed (double pole)"

if V[1]1+I[1] '= 0.:

print "Pole check failed (single pole)"
K = self.alphas(mu*mu)/(2.*m.pi)*4./3.x(V[2]+I[2])
return (lo[0], lo[1]1*(1.+K))

It is obvious that the e%- and e-poles cancel between Eq. (5) and Eq. (6), therefore we do not need
to perform the pole cancellation test above. However, in more complicated NLO calculations, such a
cross-check becomes vital, as it provides a simple yet powerful tool to validate the result.

We can now combine our matrix-element corrected parton shower and the NLO-reweighted matrix-
element generator into a full-fledged POWHEG simulation by replacing hardxs.GenerateL0Point ()
with hardxs.GeneratePOWHEGPoint () in shower.py.

Generate events using this POWHEG simulation and store the analysis results in a separate yoda file
by replacing jetrat.Finalize("myshower") with jetrat.Finalize("mypowheg"). Compare to the
parton shower predictions. What can you say about the Catani-Seymour kernels in relation to the full
real-emission correction? Could you have anticipated this result based on the expressions above?

8 MC@NLO matching

Next we turn to the MCQNLO matching method. Matrix-element corrections will not be necessary in
this case, as the difference between the parton shower and the full real-emission correction is implemented
by the hard function. You should therefore disable the matrix element corrections in shower.py.

We benefit from the fact that our parton shower is based on the Catani-Seymour dipole splitting
functions. This allows us to identify the MC counterterms for our MC@QNLO with the Catani-Seymour
dipole subtraction terms for eTe™ — g7. We implement both the subtraction terms and the real-emission
corrections in matrix.py:

def Real(self,lome,pl,p2,p3,mu):
s12 = 2.xpl*p2
s13 = 2.*xpl*p3
s23 = 2.xp2%*p3
R = lomex*(s23/s13+s13/523+2.%s12*(s12+s13+s23) /(s13%s23))
cpl = 8.*m.pix*self.alphas (mu*mu)*4./3.
return cpl*R

def RSub(self,fl,pa,pl,p2,p3,mu):
s12 = 2.xpl*p2
s13 = 2.xpl*p3
523 = 2.%*p2*p3
y132 = s13/(s12+s13+s23)
y231 = s23/(s12+s13+s23)
if y132 < self.amin or y231 < self.amin:
return []
zl = s12/(s12+s23)
z2 = s12/(s12+s13)
pl3t = pl+p3-y132/(1.-y132)*p2
plt = 1./(1.-y231)*pl
D132 = 1./y132 * (2./(1.-z1%(1.-y132))-(1.+z1))
D231 = 1./y231 * (2./(1.-z2%(1.-y231))-(1.+22))
D132 *= self .ME2(fl,s12+s13+s23, (pa+p13t) .M2())
D231 *= self .ME2(fl,s12+s13+s23, (pa+plt) .M2())
cpl = 8.*m.pix*self.alphas (mu*mu)*4./3.
return [cpl*D132, cpl*D231]

The argument list of these functions will become clear when we construct the complete hard event. For
the moment, it shall suffice to say that p1, p2 and p3 label the quark, anti-quark and gluon momenta,

respectively. Note that we test for a minimum cut on the scaled virtualities y130 and yo31 in the dipole
subtraction terms. The corresponding cutoff, self.amin should be set to 1.e-10 in the constructor.
When a point is generated that falls below this cutoff, we will skip it due to potential numerical problems
in the cancellation of real correction and subtraction terms.

Now we are ready to construct the full hard event. We perform the phase-space integration using a
forward-branching algorithm, with kinematics defined by the parton shower. In a first step, you should
therefore copy the function MakeKinematics from shower.py to matrix.py. Next we need to generate
the phase-space variables y and z in Eq. (1) and an azimuthal angle. We also need to compute the
corresponding weight. We use priors of 1/y® and 1/2%, where a and 3 are adjustable exponents denoted
by self.ye and self.ze in the code. They should be fixed to .5 and .01 in the constructor.

def GenerateHPoint(self,lo,mu):
y = pow(r.random(),1./(1.-self.ye));
w = pow(y,self.ye)/(1.-self.ye);
z = pow(r.random(),1./(1.-self.ze));
w *= pow(z,self.ze)/(1l.-self.ze);
phi = 2.*m.pi*r.random()
w x= (1.-y)/(16.*m.pi*m.pi);

Next we determine which of the two leading-order partons radiates, and we construct the kinematics of the
full 3-parton final state. This is done based on the leading-order momentum and flavor configuration,
which is passed to the GenerateHPoint function along with the leading-order weight in form of the
variable lo.

ij = r.randint(0,1)
pe = self.MakeKinematics(z,y,phi,lo[0] [2+ij].mom,1l0[0] [3-ij].mom)

We can now compute the real emission matrix element and the real subtraction terms, using the functions
Real and RSub. At this point we also perform the cut on small scaled virtualities

Dijk = self.RSub(lo[0][2].pid,10[0] [0] .mom,pe[2*ij],pe[2-2%ij],pel[1],mu)
if len(Dijk) == O:

return (1o[0], 0.)
R = self.Real(lo[2],pe[2%*ij],pe[2-2%ij],pe[1],mu)

As the last step in this function, we assemble the H event and its weight. Note that 10 [0]/10o[2] gives
the weight of the leading-order phase space, check the GeneratePoint method for details.

return ([
1o[01[0],10[0] [1],
Particle(21,pel1],[2,1]),
Particle(lo[0] [2].pid,pel[2*ij], [1,0]),
Particle(lo[0] [3].pid,pe[2-2*ij], [0,2])
1, lol1]/lo[2]*w*(R-Dijk[0]-Dijk[1]))

To complete the MCQNLO, we need a generator for S events. It is implemented along the lines of the
POWHEG generator in Sec. 7, except that the integrated real correction is replaced by the two integrated
Catani-Seymour dipole terms:

def GenerateSPoint(self,lo,mu):
1 = m.log(mu*mu/ (1o [0] [2] .mom+10[0] [3] .mom).M2())
V=1[-2., -3. - 2.%1, -8.+m.pi*m.pi - 3.*1 - 1x1]
1132 = [1., 3./2. + 1, 5.-m.pi*m.pi/2. + 3./2.%1 + 1x1/2.]
1231 = [1., 3./2. + 1, 5.-m.pi*m.pi/2. + 3./2.%1 + 1x1/2.]
if V[0]+I132[0]+I231[0] !'= O.:
print "Pole check failed (double pole)"
if V[1]+I132[1]+I1231[1] != 0O.:
print "Pole check failed (single pole)"
K = self.alphas(mu*mu)/(2.*m.pi)*4./3.*x(V[2]+I132[2]+I231[2])
return (lo[0], lo[1]*(1.+K))

Finally we combine S and H event generation in a single function, which is to be called from shower . py:

def GenerateMCNLOPoint(self):
lo = self.GeneratePoint ()
if r.random() < self.ws:
nlo = self.GenerateHPoint(lo,self.ecms)
return (nlo[0], nlo[1]/self.ws)
nlo = self.GenerateSPoint(lo,self.ecms)
return (nlo[0], nlo[1]/(1.-self.ws))

The parameter self.ws determines the fraction of H events to be generated. Usually this would be
determined based on the relative variance of the S and H event sample. To keep things simple, we fix
this number to .25 in the constructor.

On the parton-shower end of the MC@NLO matching, we need to respect the reduced starting scale
in the evolution of hard events. This scale is identified as the transverse momentum of the branching in
the more likely of the two corresponding parton-shower histories. We first determine these two histories,
using the fact that their weights correspond to the exact NLO subtraction terms. Then we compute the
transverse momentum of the emission in the more likely history based on the phase-space variables z
and y. Both tasks are performed by the code snippet below, which is inserted right before the call to
shower .Run(event,t) in shower.py.

if len(event) > 4:
Dijk = hardxs.RSub(event[3].pid,event[0] .mom,
event [3] .mom,event [4] .mom,
event[2] .mom,91.1876)

s12 = event[3] .mom*event [4] .mom
s13 = event[3] .mom*event [2] .mom
s23 = event[4] .mom*event [2] .mom

if Dijk[0]/(Dijk[0]+Dijk[1]) > r.random():
z1 = 812/ (812+s23)
t = s13%z1x(1.-z1)
else:
z2 = 812/ (s12+s13)
t = 823%z2x(1.-z2)

Can you explain what needs to be done in processes of higher jet multiplicity?

Generate events using your MCQNLO simulation and store the analysis results in a separate yoda
file by replacing jetrat.Finalize("mypowheg") with jetrat.Finalize("mymcatnlo") in shower.py.
Compare all predictions and judge the matching uncertainty. Could you have anticipated the result
based on the expressions you implemented?

The implementation of the MC@QNLO method in this tutorial may seem more cumbersome than that
of the POWHEG method. But the simplicity of our POWHEG generator is due to the knowledge
of the analytic expression of the Born-local integrated real correction. This expression is hardly ever
known in practice, and the implementation of POWHEG becomes in fact more complicated than that
of MC@QNLO. You may want to read about this in Sec. 4.1 of arXiv:1411.4085.

10

