

Introduction to Parton Distribution Functions

Ringailė Plačakytė University of Hamburg

Outline:

- Introduction to Parton Distribution Functions (PDFs)
- PDF determination
 - theory and experimental input
 - methodology
- Overview of available PDFs
- Tools for the PDF determination

Introduction

The first evidence of the structure of the proton (nucleon) has been provided with the results of the inelastic collisions

(inelastic e.g. electron-proton scattering at sufficient high scales brakes-up the proton)

The simple parton model introduced by Feynman (1969) to explain Bjorken scaling says that proton is composed of a number of point-like consituents (partons)

→ if proton is made up from point-like particles, then the cross section becomes approximately independent on the scale (**Bjorken scaling**)

Experimentally observed at SLAC in late 60s :

Ringailė Plačakytė

Introduction

Soon experiments (fixed target, HERA) showed that Bjorken scaling is violated:

approximate region of SLAC measurement

According the parton model, proton is made up from up and down quarks \rightarrow the average total momentum of the proton carried by quarks is:

$$\int_0^1 x u(x) dx + \int_0^1 x d(x) dx \approx 0.36 + 0.18 = 0.54$$

... nowadays we know that gluon is responsible for the rest of the proton momentum

Introduction

Soon experiments (fixed target, HERA) showed that Bjorken scaling is violated:

approximate region of SLAC measurement

According the parton model, proton is made up from up and down quarks \rightarrow the average total momentum of the proton carried by quarks is:

$$\int_0^1 xu(x)dx + \int_0^1 xd(x)dx \approx 0.36 + 0.18 = 0.54$$

... nowadays we know that gluon is responsible for the rest of the proton momentum

What are Parton Distribution Functions (PDFs) of the proton and how are they related to partons?

PDFs \rightarrow probability for a parton to carry the fraction x of proton momentum

PDFs are intrinsic property of nucleon, i.e assumed to be process independent

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

→ PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass)

 \rightarrow agreement with Standard Model depends on how well we know PDFs and α_{c}

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

- → PDFs limit the accuracy of the SM predictions (including Higgs, W mass)
- → **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

For example, the production of SUSY colored particles (squarks and gluinos) are sensitive to gluon at high $x=2m_y/\sqrt{s} \sim 0.2$ -0.7

Ringailė Plačakytė

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

→ PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass)

→ **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

QCD factorisation:

Ringailė Plačakytė

[D. Soper's lecture]

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

→ PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass)

→ reach of new physics searches depends on PDF knowledge at high Bjorken-x

QCD factorisation:

In this lecture we focus on proton PDFs

- → similar to proton case, PDFs can be extracted and for **heavy nuclei** (protons bound in nuclei)
 - \rightarrow nuclear targets is play a key role in the flavor differentiation
- → derived from the same basic principles but less accurate due to smaller available data sets

Ringailė Plačakytė

Properties of PDFs (recap)

PDF determination is based on **QCD factorisation**

x-dependence of PDFs is not calculable in perturbative QCD

 \rightarrow parametrise PDFs at the starting scale Q^2_{0}

 Q^2 dependence is calculable in perturbative QCD: evolve PDFs using DGLAP equations to $Q^2 > Q_0^2$

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations:

$$\frac{\partial q(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{qq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{qg}\left(\frac{x}{z}\right) \right]$$
$$\frac{\partial g(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{gq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{gg}\left(\frac{x}{z}\right) \right]$$

Probability via splitting functions:

Ringailė Plačakytė

A (very) general flow diagram of the PDF extraction:

initialisation

choose parameterisation at starting scale and other input parameters

Initialisation

A (very) general flow diagram of the PDF extraction:

initialisation

choose parameterisation at starting scale and other input parameters

experimental data
 (collider, fixed target)
 compared with theory predictions
 (NLO, NNLO, ...)

A (very) general flow diagram of the PDF extraction:

initialisation

choose parameterisation at starting scale and other input parameters

- experimental data
 (collider, fixed target)
 compared with theory predictions
 (NLO, NNLO, ...)
- QCD analysis is performed: experimental uncertainties χ^2 calculation

A (very) general flow diagram of the PDF extraction:

initialisation

choose parameterisation at starting scale and other input parameters

- experimental data
 (collider, fixed target)
 compared with theory predictions
 (NLO, NNLO, ...)
- QCD analysis is performed: experimental uncertainties χ^2 calculation

• PDFs

also QCD and EW parameters, comparison with data, pulls, etc...

A (very) general flow diagram of the PDF extraction:

initialisation

choose parameterisation at starting scale and other input parameters

- experimental data
 (collider, fixed target)
 compared with theory predictions
 (NLO, NNLO, ...)
- QCD analysis is performed: experimental uncertainties χ^2 calculation

• PDFs

also QCD and EW parameters, comparison with data, pulls, etc...

Minimisation: adjust initial parameters and fit again

final PDFs

A (very) general flow diagram of the PDF extraction:

initialisation

choose parameterisation at starting scale and other input parameters

- experimental data
 (collider, fixed target)
 compared with theory predictions
 (NLO, NNLO, ...)
- QCD analysis is performed: experimental uncertainties χ^2 calculation

• PDFs

also QCD and EW parameters, comparison with data, pulls, etc...

Minimisation: adjust initial parameters and fit again

PDFs

Initialisation

Data

Theory

final PDFs: CT/CJ, MMHT, NNPDF, ABM, HERAPDF, JR

Ringailė Plačakytė

PDF Determination: Main Aspects

Input data: which are sensitive to PDFs / to include in PDF fit?

 \rightarrow DIS and other collider data, some examples (mainly from LHC)

Parameterisation form

```
Goodness of the fit - \chi^2 function
```

PDF uncertainties

Heavy quark treatment in PDFs

PDF Determination: Experimental Data

<u>Question</u>: which data include in PDF fit?

kinematic plane of the experimental data (in x.O²)

Ringailė Plačakytė

PDF Determination: Experimental Data

<u>Question</u>: which data include in PDF fit?

Deep Inelastic Scattering (**DIS**): unique opportunity to study the structure of the proton (nucleon)

Neutral Current (NC): $ep \rightarrow eX$ Charged Current (CC): $ep \rightarrow vX$ Recap: [D. Soper's lectures]

Kinematics:

- Q^2 virtuality of exchanged boson
- x Bjorken scaling variable
- y inelasticity

 $Q^2 = sxy$ (\sqrt{s} centre-of-mass energy)

Fixed target data (SLAC, BCDMS, NMC, CCFR, NuTeV, CHORUS,...)

HERA - worlds only *e*[±]*p* collider (1994-2007) collider experiments: H1 and ZEUS, fixed-target: HERMES, HERA-B

ep scattering at HERA: Neutral Currents

Neutral current DIS cross section:

Cross section is decomposed in terms of structure functions:

$$\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \Big[Y_+ \tilde{F}_2^{\pm} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \Big]$$

dominant contribution
important at high Q²
sizable at high y

NC event in ZEUS detector

$$Y_{\pm} = 1 \pm (1 - y)^2$$
$$k = \frac{1}{4\sin^2 \theta_m \cos^2 \theta_m} \frac{Q^2}{Q^2 + M_\pi^2}$$

at LO sensitive to sum and difference of quarks and anti-quark densities:

LO:
$$F_2 \approx x \sum e_q^2 (q + \bar{q})$$
 (in NLO ($\alpha_s g$) appear)
 $xF_3 \approx x \sum 2e_q a_q (q - \bar{q})$ PDFs

Ringailė Plačakytė

ep scattering at HERA: Charged Currents

Charged current DIS cross section:

$$\frac{d^2 \sigma_{CC}^{e^{\pm}p}}{dx dQ^2} = (1 \pm \frac{P_e}{2\pi x} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \tilde{\sigma}_{CC}^{e^{\pm}p}$$

P - electron(positron) polarisation

at LO e⁺/e⁻ sensitive to different quark densities:

$$\sigma_{cc}^{e_{+}} \approx x[\overline{u}+\overline{c}] + (1-y)^{2}x[d+s]$$

$$\sigma_{cc}^{e_{-}} \approx x[u+c] + (1-y)^{2}x[\overline{d}+\overline{s}]$$

PDFs

Ringailė Plačakytė

ep scattering at HERA

Scaling violations: final word from HERA

Scaling violations

(the dependence of the structure functions on Q^2 at fixed x)

are a consequence of the strong interactions between the partons in the nucleon

→ gluon can be extracted from these data

Ringailė Plačakytė

Data to constrain PDFs

Other hadron collider data can constrain and improve PDFs further

Data in PDF fits

Deep Inelastic Scattering:

ep data: quarks and gluon at small x (F_1), flavour separation (CC) jets \rightarrow gluons (moderate x) and α_{s} heavy quarks \rightarrow gluons, tests of heavy quark schemes, mass determination fixed target data: higher x

neutrino DIS: flavour decomposition, x > 0.01

Drell-Yan production:

 $\vec{a} \xrightarrow{q} \vec{a} \xrightarrow{q} \vec{a}$ V+ heavy flavour \rightarrow sensitivity to s quark

Inclusive jets, dijets and ratios:

high x gluon, α_s Isolated photon → gluon at medium and high x

ttbar, single top:

gluon at high x, u and d quarks, α_s

some examples follow...

Ringailė Plačakytė

W and Z production at LHC

Z and W production at LHC

- → probe different flavour combinations
- \rightarrow potential to improve quark PDFs

 \rightarrow u and d quarks dominate for W, all flavours contribute to Z

Ringailė Plačakytė

W Asymmetry

W lepton charge asymmetry at LHC

 \rightarrow overall excess of W⁺ over W⁻ due to presents of two valence *u* quarks in the proton

→ probe valence quarks and PDFs rations (u_v , d_v , d/u, d_v/u_v , dbar/ubar):

$$A_{W} = \frac{W^{+} - W}{W^{+} + W} \approx \frac{u_{v} - d_{v}}{u_{v} + d_{v} + 2u_{sea}}$$

CMS W muon asymmetry data (8 TeV)

arXiv:1603.01803

Ringailė Plačakytė

W and Z production (differential cross sections)

ATLAS W[±] and Z inclusive differential cross sections (35 pb⁻¹)

s-quark contribution largest in Z production at central rapidity

W and Z production: sensitivity to s-quark

ATLAS W[±] and Z inclusive differential cross sections (35 pb⁻¹)

QCD analysis at NNLO of ATLAS W,Z data \rightarrow results support symmetric light-sea

W + charm Production at LHC

Measurement of W+c at LHC provide additional constrains to the s quark

CMS in good agreement with CT10 while ATLAS data is above - indication of enhanced s fraction

Strange quark PDF

Comparison of the s-quark fraction determined by ATLAS and CMS (no fixed-target data, no additional assumptions) and with determination using fixed-target data

New data from LHC will bring more information about the s-quark

Jet Production at LHC

Jet production at LHC

 \rightarrow provides information about hard QCD, PDFs, strong coupling constant $\alpha_{_{\rm s}}$

 \rightarrow PDFs and $\alpha_{_{\! S}}$ depend on scale of the process \rightarrow $P_{_{\! T}}$ of the jet

... and ratios (smart way of canceling large part of e.g. jet scale uncertainty)

- \rightarrow LHC jet data provide constrains in high-x region
- \rightarrow at high scales may reveal new physics (depend how well gluon at high x is known)

Inclusive Jet Production

Inclusive jet measurements and QCD analysis of LHC data

QCD analyses at NLO with (HERA and) inclusive jet data performed by

→ jet data can help to improve gluon distribution function in high-x region and provides possibility to extract strong coupling constant α_{c}

Ringailė Plačakytė

Top Quark Pairs (LHC and Tevatron)

Top quark pairs $(t\overline{t})$ provides possibility to

 \rightarrow tests of pertubative QCD, sensitive to new physics effects

→ probe of high-x gluon (high correlation between gluon, α_{c} and top quark mass)

Guzzi et al., DiffTop JHEP 1501 (2015) 082

 → QCD analysis with ATLAS and CMS tt data (together with HERA, Tevatron and W production data at LHC)

 \rightarrow additional top data will provide more information on PDFs

Ringailė Plačakytė

Impact of LHCb Heavy Flavour Data to PDFs

LHCb heavy-flavour data impose additional constraints on the gluon and the sea-quark distributions at low \boldsymbol{x}

- → first time used to constrain PDFs Nucl. Phys. B871 (2013) JHEP08 (2013) 117
- → NLO QCD analysis (together with HERA data) with the fixed-flavour number scheme
 - → absolute and normalised cross sections

Eur.Phys.J. C75 (2015) 8, 396

PDF Determination: Main Aspects

Input data: which are sensitive to PDFs / to include in PDF fit?

 \rightarrow DIS and other collider data, some examples (mainly from LHC)

Parameterisation form

Goodness of the fit - χ^2 function

PDF uncertainties

Heavy quark treatment in PDFs

PDF Determination: Parametrisation

PDFs are parametrised (at the starting scale Q_0^2) using some flexible form

(starting scale choice is arbitrary, often $Q_0 = m_c$)

generic parametrisation form:

$$xf_j(x) = A_j x^{B_j} (1-x)^{C_j} P_j(x)$$

with
$$P_j(x) = (1 + \varepsilon_j \sqrt{x} + D_j x + E_j x^2)$$

or $e^{a_3x}(1+e^{a_4}x+e^{a_5}x^2)$

A: overall normalisation B: small x behavior C: $x \rightarrow 1$ shape

HERAPDF, MSTW/MMHT (Chebyshev polynomials), ABM, JR CTEQ, CT (Bernstein polynomials)

→ parametrisation has to be flexible enough (many free parameters) to avoid bias, however too many parameters may also lead to certain bias (several minima, problems to converge, ...)

→ different parametrisations, if carefully chosen, will lead to similar results

Ringailė Plačakytė

PDF Determination: Parametrisation

PDFs are parametrised (at the starting scale Q_0^2) using some flexible form

parametrised in x-space with the flexible neural network (NN) method:

used by NNPDF collaboration

Basic principle:

- → Monte Carlo (MC) sampling of data (generation of replicas of experimental data)
- → training: set of PDFs parametrised by neural networks on each of the replicas
- → validation: fit stops when quality of fit stops improving (determined by random selected validation data)

advantage: unbiased parametrisation *disadvantage*: requires sufficient data

Uncertainties: Monte Carlo approach (explained later)

Ringailė Plačakytė

Measure the goodness of the fit: χ^2 function

The goodness of the fit is (typically) measured by χ^2 in PDFs

 \rightarrow it is important to account statistical and systematic uncertainties of data \rightarrow theory (PDF) uncertainties can be accounted for

Ringailė Plačakytė

Measure the goodness of the fit: χ^2 function

The goodness of the fit is (typically) measured by χ^2 in PDFs

Standard χ^2 function

 \rightarrow same definition rewritten:

$$\chi^{2}_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{\alpha} \gamma^{i}_{\alpha} \mu^{i} b_{\alpha} - \mu^{i}\right]^{2}}{\left(\delta_{i, \text{stat}} \mu^{i}\right)^{2} + \left(\delta_{i, \text{uncor}} \mu^{i}\right)^{2}} + \sum_{\alpha} b^{2}_{\alpha}$$
$$\Gamma^{i}_{\alpha} = \gamma^{i}_{\alpha} \mu_{i}$$

$$\chi^{2}(\boldsymbol{b}_{\exp}, \boldsymbol{b}_{th}) = \sum_{i=1}^{N_{data}} \frac{\left(\sigma_{i}^{\exp} + \sum_{\alpha} \Gamma_{i\alpha}^{\exp} b_{\alpha, \exp} - \sigma_{i}^{th} - \sum_{\beta} \Gamma_{i\beta}^{th} b_{\beta, th}\right)^{2}}{\Delta_{i}^{2}} + \sum_{\alpha} b_{\alpha, \exp}^{2} + \sum_{\beta} b_{\beta, th}^{2}$$

Impact of experimental data on PDFs can be studied by minimizing data to theory χ^2 vs nuisance parameters corresponding to PDF eigenvectors ("profiling")

[S. Camarda, xFitter tutorial]

Ringailė Plačakytė

PDF Uncertainties: Hessian Method

PDF uncertainties come from

experimental measurement errors and from theoretical approximations

main two methods used:

PDF parameters: $\{a_i\}$ i=1...d

→ method used by
CT, MMHT, HERAPDF, ABM, JR groups

$$d = \frac{d}{d} \sum_{j=1}^{d} \int_{j=1}^{d} H_{ij} \left(a_i - a_i^0 \right) \left(a_j - a_j^0 \right)$$
Hessian matrix of second derivatives: $H_{ij} = \frac{1}{2} \frac{\partial^2 \chi_{global}^2}{\partial a_i \partial a_j} \Big|_{0}$

$$MSTW 2008 NLO PDF fit$$

$$MSW 2008 NLO PDF$$

$$MSW$$

Ringailė Plačakytė

PDF Uncertainties: Monte Carlo Method

PDF uncertainties come from

experimental measurement errors and from theoretical approximations

main two methods used:

→ **Monte Carlo** (used by NNPDF)

generate a large number of MC replicas of the experimental data according to multi-gaussian probability distribution

 \rightarrow perform a separate fit using each data replica

Expectation values for any variable $F^{(k)}$ (of k replica) and its uncertainty can be determined directly using

$$\langle F \rangle = \frac{1}{N_{\text{rep}}} \sum_{i}^{N_{\text{rep}}} F^{(k)}$$
$$\sigma^{2}[F] = \frac{1}{N_{\text{rep}} - 1} \sum_{i=1}^{N_{\text{rep}}} (F^{(k)} - \langle F \rangle)^{2}$$

Heavy Quark Treatment in PDFs

QCD factorisation:

 $\sigma(\alpha_s,\mu_R^2,\mu_F^2) = \sum_{a,b} \int_0^1 f_a(x_1,\mu_F^2) f_b(x_2,\mu_F^2) \hat{\sigma}(x_1,x_2;\alpha_s,\mu_R^2,\mu_F^2) + \dots$ measured cross section =

a, b - partons in the proton (g, q, qbar) of different flavours

 if #flavours fixed: Fixed Flavour Number Scheme (FFNS) only light flavours in the proton: i = 3 (4) c- (b-) quarks massive, produced in boson-gluon fusion, $Q^2 \gg m_{_{HO}}^{_2}$: can be less precise, NLO coefficients contain terms ~ $ln(Q/m_{_{HQ}})$

if #flavours variable: Variable Flavour Number Scheme (VFNS)

- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{_{HO}}^{_2}$
- Generalized Mass VFNS: different implementations provided by PDF groups, smooth matching with FFNS for $Q^2 \rightarrow m_{_{HO}}^2$ must be assured

 \rightarrow m_c is a parameter (M_c)

treatment of heavy quarks is important in PDFs

Ringailė Plačakytė

PDFs on the Market

MMHT/MSTW

→ global PDF set (includes all type of data) with 25 eigenvector pairs (VFNS-TR'). Latest MMHT14 sets in LO, NLO and NNLO EPJC75 (2015) 204, arXiv:1412.3989

CT/CTEQ/CJ

→ global PDF set with 28 eigenvector pairs (VFNS-ACOT). Latest CT14 sets in LO, NLO and NNLO (90% CL) PRD93, 033006 (2016), arXiv:1506.07443

NNPDFs

→ global PDF set with 100 and 1000 MC replicas (VFNS FONLL-B,C and FFNS) . Latest NNPDF3.0 sets in LO, NLO and NNLO JHEP 04 (2015) 040, arXiv:1410.8849

HERAPDF

→ HERA (combined) data (VFNS-TR'). Latest HERAPDF2.0 sets in LO, NLO and NNLO EPJC 75 (2015) 12, 580

ABM/ABKM

→ global PDF set (FFNS). Latest ABM12 sets in NLO and NNLO PRD89 (2014) 054028, arXiv:1310.3059

JR/GJR

→ global PDF set (no LHC data) with dynamical approach (FFNS+VFNS). Latest JR14 sets in NLO and NNLO PRD89 (2014), no. 7 074049, arXiv:1403.1852

PDF Fitting Groups

Main sources of difference between different PDFs:

- inclusion of different data
- methods of determining 'best fit'
- uncertainty treatment/sources
- assumptions in procedure (parametrisation)
- heavy flavour treatment
- PDF and α_{s} correlation

... lead to differences in the cross section predictions

G. Watt (November 2012)

Different PDF lead to differences in cross section predictions

G.Watt arXiv:1301.6754

Different PDF lead to differences in cross section predictions

Ringailė Plačakytė

Different PDF lead to differences in cross section predictions

arXiv:1510.03865

Ringailė Plačakytė

Different PDF lead to differences in cross section predictions

arXiv:1510.03865

- → many more measurements to come
- \rightarrow many theory calculations for higher order predictions are ongoing
- → collaborative theory and experiment efforts!

... which require flexible tools

Ringailė Plačakytė

PDF Tools

Often perturbative higher-order calculations are extremely time consuming → not possible to include into PDF fits

solution: fast grid techniques

- \rightarrow based on assumption that PDF can be approximated by a set of the interpolation functions
- → after first time (full) calculation, technique with interpolation functions can be used for the fast theory prediction calculations (for any PDF)

Currently available tools: FastNLO Eur.Phys.J. C19 , 289 (2001), hepph/0609285 and APPLGRID hepph/0510324, arXiv:0911.2985

PDFs ($f_{a/h}$) approximated by linear combination of the eigenfunctions $E^{(i)}$:

$$f_{a/h}(x) \simeq \sum_{i} f_{a/h}(x_i) E^{(i)}(x)$$

log₁₀(x)

Ringailė Plačakytė

PDF Tools

Available (open-source) tools for the PDF determination:

OPENQCDRAD (ABM collaboration: numerical computation of all hard scattering cross sections (DIS structure function calculation including heavy quark contributions, W and Z production) PRD86 (2012) 054009, www-zeuthen.desy.de/~alekhin/OPENQCDRAD

APFEL (NNPDF collaboration): a PDF evolution library, is a computer library specialized in the solution of DGLAP evolution equations up to NNLO in QCD and to LO in QED arXiv.1310.1394, apfel.hepforge.org

xFitter (former HERAFitter): an open-source package that provides a framework for the determination of the PDFs of the proton and for many different kinds of analyses in QCD EPJC (2015), 75: 304, *xfitter.org*

ALPOS: an object-oriented data to theory comparison and fitting tool (profit from and exchange with xFitter experience) http://desy.de/~britzger/alpos/ → access from a public svn repository (via request)

PDF Tools

Available (open-source) tools for the PDF determination:

OPENQCDRAD (ABM collaboration: numerical computation of all hard scattering cross sections (DIS structure function calculation including heavy quark contributions, W and Z production) PRD86 (2012) 054009, www-zeuthen.desy.de/~alekhin/OPENQCDRAD

APFEL (NNPDF collaboration): a PDF evolution library, is a computer library specialized in the solution of DGLAP evolution equations up to NNLO in QCD and to LO in QED arXiv.1310.1394, apfel.hepforge.org

xFitter (former HERAFitter): an open-source package that provides a framework for the determination of the PDFs of the proton and for many different kinds of analyses in QCD EPJC (2015), 75: 304, *xfitter.org*

ALPOS: an object-oriented data to theory comparison and fitting tool (profit from and exchange with xFitter experience) http://desy.de/~britzger/alpos/ → access from a public svn repository (via request)

xFitter Project

xFitter project is based on a multi-functional open source QCD software package that provides a framework for scrupulous interpretations of the QCD analyses

Ringailė Plačakytė

Results Obtained with xFitter

More than **30 public results** obtained using xFitter from the beginning of the project https://www.xfitter.org/xFitter/xFitter/results

LHC experiments provide the main developments and usage of the xFitter platform

xFitter publications:

xFitter
0

03.2016 >	xFitter and APFEL to	eams and A. Geiser	arXiv:1605.01946	A determination of mc(mc) from HERA data using a matched heavy flavor scheme			
List of analyses using HERAFitter							
NEW 03.20	15 HERAFitter team	EPJC 75 (2015) 9, 458	8, arXiv:1503.05221	QCD analysis of W- and Z-boson production at Tevatron			
10.2014	HERAFitter team	EPJC (2015), 75: 304,	arXiv:1410.4412	HERAFitter Open Source QCD Fit Project			
04.2014	HERAFitter team	EPJC (2014) 74: 3039	, arXiv:1404.4234	Parton distribution functions at LO, NLO and NNLO with correlated uncertainties between orders			

Results Obtained with xFitter: Examples

Drell-Yan processes (pp, ppbar)

Ringailė Plačakytė

CTEQ/MCnet School, 6 - 16 July, 2016

THANK YOU

xFitter tutorial (S. Camarda) after lunch today

Ringailė Plačakytė

Back-Up Slides

Ringailė Plačakytė

Data used in PDFs

PDF groups use different experimental data in the fits

\rightarrow changes in time for CT, MMHT, ABM and NNPDF PDFs

	20	08	2	009	201	10	2011	20	12	201	3	20	14	2015
SET	CT6.6	NN1.0	MSTW	ABKM09	NN2.0	CT10(N) NN2.1(NN)	ABM11	NN2.3	CT10(NN)	ABM12	NN3.0	MMHT	CT14
MONTH	(02)	(08)	(01)	(08)	(02)	(07)	(07)	(02)	(07)	(02)	(10)	(10)	(12)	(06)
F. T. DIS	~	<	~	~	•	~	~	~	~	~	~	<	<	۲
ZEUS+H1-HI	~	~	~	~	~	~	~	~	~	~	~	~	~	~
COMB. HI	×	×	×	×	~	×	~	×	~	×	~	~	×	×
ZEUS+H1-HII	×	x	×	X	x	x	some	x	×	some	x	~	×	x
HERA JETS	x	x	~	x	x	x	x	x	x	x	x	x	~	x
F. Т. DY		x			1							2		
TEV. W+Z		`									•			
TEV JETS	•	^	•	<u>^</u>	•		•	^	•	•		•	•	•
127. 0213	 	×	✓	×	 	~	×	 	 	 	×	 	~	
LHC W+Z	×	×	×	×	×	×	×	×	~	×	some	~	~	~
LHC JETS	×	×	×	×	×	×	×	×	~	×	×	~	~	~
TOP	×	×	×	×	×	×	×	×	×	×	~	~	×	×
W+c	×	x	x	X	x	x	x	x	x	x	X	~	x	x
W p_T	×	x	×	×	×	×	×	×	×	×	×	~	×	x
	1					I I			I I		I			

S. Forte

LHC Processes Sensitive to PDFs

LHC data

- \rightarrow can help to discriminate between PDF sets
- \rightarrow can help to improve PDFs

process

sensitivity to PDFs

W asymmetry	→ quark flavour separation
W and Z production (differential)	→ valence quarks
W+c production	→ strange quark
Drell-Yan (DY): high invariant mass	→ sea quarks, high-x
Drell-Yan (DY): low invariant mass	→ low-x
W,Z +jets	→ gluon medium-x
Inclusive jet and di-jet production	→ gluon and $\alpha_s(M_z)$
Direct photon	→ gluon medium, high-x
ttbar, single top	→ gluon and α_{s} (M ₇)

W Asymmetry

CMS W muon charge asymmetry measurement: QCD analysis at NLO

with HERA I+2 combined DIS data EPJC 75 (2015) 12, 580

arXiv:1603.01803

error bands represent total uncertainties, (experimental, model and parametrisation uncertainties)

Change of PDF shape, improved constraints on the valence distributions

Ringailė Plačakytė

W and Z production (low-mass, high-mass)

Drell Yan data mass spectra:

- \rightarrow high-mass: sensitive to sea quarks at high-x (and thus to new physics at high-scale)
- → low-mass: similar at the low-x region (EW corrections are important)

These LHC measurements are already being included into global PDF fits

W and Z production (P_{T})

ATLAS and CMS have also studied the $\mathsf{P}_{_{\!\!\mathrm{T}}}$ spectrum in Z rapidity bins

- \rightarrow low P $_{_{\rm T}}$ region dominated by the emission of soft partons (resummation and shower models)
- \rightarrow high P_T region: quark-gluon scattering (PDFs)

Valuable data for various purposes (e.g. W mass, PDFs), currently limited by precision in theory

Ringailė Plačakytė

Di- and three-jet Measurements

Recent di-jet and three-jet measurements from ATLAS and CMS

 \rightarrow comparison with different PDFs: some tension with e.g. ABM11 PDF observed

Three-jet (probe different phase space due to different combination of the initial-state partons)

Ringailė Plačakytė

Prompt Photon Production at LHC

Prompt photon data at LHC is sensitive to gluon content at high x

ATLAS study of the inclusive photon data sensitivity to parton distributions \rightarrow quantitative data to theory assessment (χ^2)

 \rightarrow large differences observed with theory (NLO) using different PDFs

→ data show potential to improve gluon distribution (currently limited by scale uncertainty)

Ringailė Plačakytė

Ringailė Plačakytė

CTEQ/MCnet School, 6 - 16 July, 2016

High Q² Neutral Current Cross Sections

$$x ilde{F}_3=rac{Y_+}{2Y_-}[ilde{\sigma}^-- ilde{\sigma}^+]$$

High Q² Neutral Current Cross Sections

Measuring the difference in NC polarised cross sections $F_{2}^{\gamma Z}$ can be accessed:

$$\frac{\sigma^{\pm}(P_L^{\pm}) - \sigma^{\pm}(P_R^{\pm})}{P_L^{\pm} - P_R^{\pm}} = \frac{\kappa Q^2}{Q^2 + M_Z^2} \left[\mp a_e F_2^{\gamma Z} + \frac{Y_-}{Y_+} v_e x F_3^{\gamma Z} - \frac{Y_-}{Y_+} \frac{\kappa Q^2}{Q^2 + M_Z^2} (v_e^2 + a_e^2) x F_3^Z \right]$$

PDFs from HERA

arXiv:1506.06042

HERA heavy quark and jet data bring additional sensitivity to PDFs

LO jet production in DIS:

 $\begin{array}{l} \alpha_{_{s}}(\text{M}_{_{Z}}){=}0.1183\pm0.0009(\text{exp}) \\ \pm\,0.0005(\text{mod}){\pm}0.0012(\text{had})\,{}^{+0.0037}_{-\,0.0030}(\text{th}) \end{array}$

 \rightarrow direct sensitivity to gluon and strong coupling constant

PDFs from HERA

HERA heavy quark and jet data bring additional sensitivity to PDFs

LO charm (boson-gluon-fusion) production in DIS:

e y y c,b g c,b c,b

 \rightarrow direct sensitivity to gluon

HERA charm and beauty data provide

- → stringent tests of heavy quark treatment in PDFs
- → significant constrain on heavy quark mass

QCD Analysis of HERA Charm Data

Eur.Phys. J. C73 (2012), 2311

In VFN schemes the charm quark mass parameter $\rm M_{c}$ does not correspond directly to a physical mass

 \rightarrow not the case for Fixed-Flavour Number Scheme (FFNS)

An NLO QCD analysis in the FFNS (FFNS of ABM, arXiv:1011.5790) performed to determine the MSbar running charm quark mass m (m_)

 $m_c(m_c) = 1.26 \pm 0.05_{\text{exp}} \pm 0.03_{\text{mod}} \pm 0.02_{\text{param}} \pm 0.02_{\alpha_s} \text{ GeV}$

consistent with the world average of $m_c(m_c) = 1.275 \pm 0.025 \text{ GeV}$

Bencharking and Future Colliders

Various benchmarking studies

 \rightarrow xFitter provided unique possibility to preform PDF related studies under the same conditions

"Les Houches 2013: Physics at TeV Colliders Standard Model Working Group Report":

→ benchmark studies provide comparison of cross sections with LHC data from Run 1 and projections for future measurements in Run 2

Impact on PDF studies at LHeC

 \rightarrow possibility to perform impact studies using simulated data

per-mille accuracy on alphas: cut Q^2 in GeV relative precision in % case HERA only (14p) $Q^2 > 3.5$ 1.94 HERA+jets (14p) $Q^2 > 3.5$ 0.82 $Q^2 > 3.5$ LHeC only (14p) 0.15 $Q^2 > 3.5$ LHeC only (10p) 0.17 $Q^2 > 20.$ 0.25LHeC only (14p) LHeC+HERA (10p) $Q^2 > 3.5$ 0.11 LHeC+HERA (10p) $Q^2 > 7.0$ 0.20LHeC+HERA (10p) $Q^2 > 10.$ 0.26

х

Ringailė Plačakytė