Matching & Merging In Parton Shower Event Generators

Simon Plätzer

IPPP, Department of Physics, Durham University & PPT, School of Physics and Astronomy, University of Manchester

at the CTEQ/Mcnet/DESY school | Hamburg, 12/13 July 2016

Part I Basics & NLO Matching

Part II (N)LO multijet merging & combining with NNLO

Warning

This will be very pictorial, as most of the formulae underlying the actual algorithms rapidly become very complicated.

LO Multijet Merging

LO Multijet Merging

LO Multijet Merging

Motivation: Multiple Shower Emissions

$$d \in lq_{n}) PS_{q_{0}} [u(q_{n})] = d \in (q_{n}) \Delta_{n}(q_{1}q_{0}) + d \in (q_{n}) Plan(q_{1}) \frac{dq_{mn}}{dq_{m}} \Delta_{n}(q_{1}q_{0}) PS[u(q_{mn})] = d \in (q_{n}) \Delta_{n}(q_{1}q_{0}) + d \in (q_{n}) P(q_{mn}q_{1}) \frac{dq_{mn}}{dq_{m}} \Delta_{mn}(p_{1}q_{0}) \Delta_{m}(q_{1}q_{0}) + d \in (q_{n}) P(q_{mn}q_{1}) \frac{dq_{mn}}{dq_{m}} \Delta_{mn}(p_{1}q_{0}) \Delta_{m}(q_{1}q_{0}) PS[u(q_{mn}q_{1})] \frac{dq_{mn}}{dq_{m}} \Delta_{mn}(q_{1}q_{0}) PS[u(q_{mn}q_{1})] = \frac{q_{0} \Delta_{m}}{q_{0} m} + \frac{q_{0} \Delta_{m}}{q_{0} m} \sum_{q_{1} m} \frac{dq_{mn}}{q_{1} m} + \frac{q_{0} \Delta_{m}}{q_{1} m} \sum_{q_{2} m}$$

Basic idea: replace approximate matrix elements with exact ones, but keep Sudakov factors which regularize divergences.

Traditional LO Merging Algorithms

- 1) Generate matrix element configurations
- 2) Cluster back into a parton shower history
- 3) Apply Sudakov weights
- 4) Add vetoed (possibly truncated) showers

Vetoed Showers and Sudakov Form Factors

Truncated Showers

[Hamilton, Richardson, Tully 2009 + Höche, Krauss, Schumann, Siegert 2009]

Truncated Showers – Do they matter?

[Hamilton, Richardson, Tully 2009]

Exclusive and Inclusive Jet Cross Sections

Expectations from the shower:

=
$$n$$
 jets: $dG(\phi_0) \frac{d\phi_n}{d\phi_0} P(\phi_0, q_0) \cdots P(\phi_n, q_n) \Delta_n (g|q_n| \cdots |q_0)$
 $\geq n$ jets: $dG(\phi_0) \frac{d\phi_n}{d\phi_0} P(\phi_0, q_0) \cdots P(\phi_n, q_n) \Delta_n (q_n| \cdots |q_0)$

With merging:

 $= M : dG_{M}(\Phi_{M}) \Delta_{M}(g|q_{M}|--1q_{0})$ $\Rightarrow M : dG_{M}(\Phi_{M}) \Delta_{M}(q_{M}|--1q_{0})$ $+ \int_{g}^{q_{M}} dq_{M+1} \left(\frac{dG(\Phi_{M+1})}{dq_{M+1}} - \frac{d\Phi_{M+1}}{d\Phi_{M}} P(\Phi_{M},q_{M+1}) dG(\Phi_{M})\right)$ $\times \Delta_{M}(q_{M+1}|-1q_{0})$ $\left(O(\frac{1}{2}) - O(\frac{1}{2}) \right)$

NLO Multijet Merging

NLO Multijet Merging

NLO Multijet Merging

Matching – worse in NLO Merging ...

Basic motivation is similar to LO merging, but now use exclusive NLO cross sections instead on exclusive LO cross sections as input to clustering.

Double counting subtraction more involved: Expand merged cross sections including Sudakov factors.

Available Multi-purpose Frameworks

Geneva

Acronym	Xsec	Shower	NNLO combined
NL3	event files	Ariadne, Pythia 8 [Lavesson, Lönnblad – 2008] [L	NO önnblad, Prestel – 2012]
MINLO / MINLO'	internal/BLHA	any, Pythia in practice [Hamilton, 2	yes Zanderighi et al. – 2012]
MEPS@NLO	internal/BLHA [ŀ	Sherpa CSS łöche, Krauss, Schönherr, Sieg	NO sert + Gehrmann – 2012]
FxFx	internal	Herwig6/++, Pythia 6/8 [Fr	no rederix, Frixione – 2012]
Vincia	internal	Vincia (FS)	no [Skands et al. – 2012]
UNLOPS/Pythia	event files	Pythia 8	no
UNLOPS/Sherpa	internal/BLHA	Sherpa CSS	yes
UNLOPS/Herwig	internal/BLHA	Herwig 7 Dipoles	no

[Lönnblad, Prestel – 2012] [Plätzer 2012] [Höche,Li,Prestel – 2014] [Bellm, Gieseke, Plätzer – 2015]

internal/resum any, Pythia in practice yes

[Alioli, Tackmann et al. – 2012]

State of the Art Predictions for H+Jets

Les Houches 2015

Summary & Outlook – Part II

LO merging is established technology.

 \rightarrow As for NLO matching, all major generators provide it.

Multitude of NLO multijet tools.

 \rightarrow Different algorithms, need to be addressed in detail.

NLO multijet merging allows for *combination* with NNLO.

 \rightarrow Matching requires showers to be pushed to higher orders.