CTEQ/MCnet School 2016 Electroweak Boson Production at the LHC

Outline Experimental Basics Some Theory and Generators Single W and Z Boson Production QCD Angular Coefficients Vector-Bosons and Jets Multibosons Electroweak Precision Measurements Conclusion

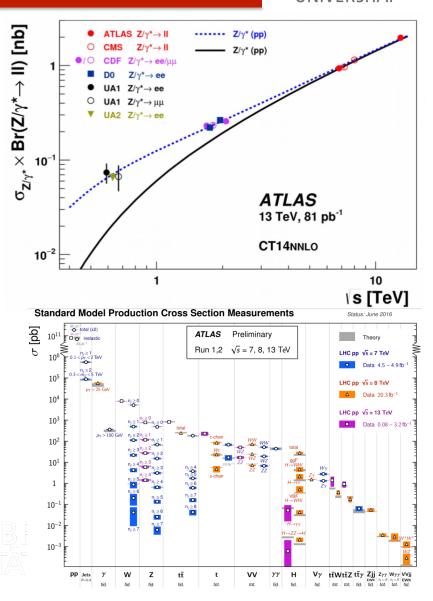
Some Facts about Mainz

Mainz is small town, but capital of Rhineland-Palatinate

- Next to the river Rhine (with some quite nice castles)
- 20 Minutes from Frankfurt International Airport
- Founded by romans 2K years ago
 - The cathedral is only 1000 years old (and burnt down several times)
- Time-Magazine's man of the millennium: Johannes
 Gutenberg, who invented the printing press in Mainz

Johannes Gutenberg University

- Founded in 1477 and reopened by the French occupation forces in 1946
- 37.000 students for all subjects (bachelor, master, PhD)
- German cluster of excellence
 PRISMA for fundamental physics
 - Own electron accelerator
 MAMI and research reactor
 - 60 professors and research groups: ATLAS, IceCube, Xenon, SOX, NA62, JUNO, ALPS, ...



Why W and Z Bosons at the LHC?

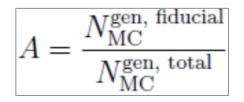
- Testing perturbative QCD calculations to highest precision
- Testing the gauge-structure of the Electroweak Sector
 - Iooking for BSM
- Precision measurements of EW observables to test the SM
- Background processes to lots of "new physics searches"
- Lecture is based on two articles:
 - arXiv:1405.1160
 - arXiv:1406.7731

Experimental Basics

<u>Outline</u>

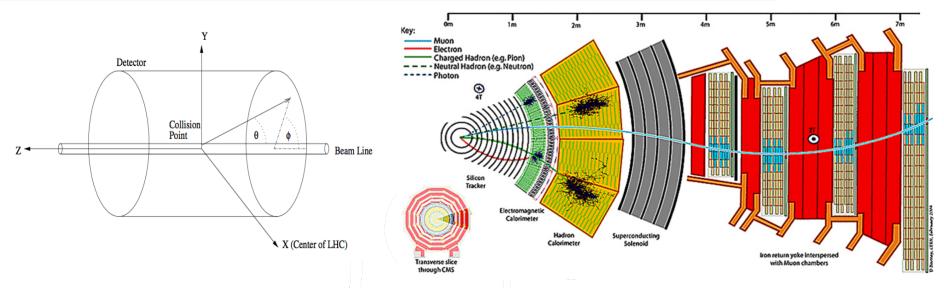
Experimental Basics
Some Theory and Generators
Single W and Z Boson Production
QCD Angular Coefficients
Vector-Bosons and Jets
Multibosons
Electroweak Precision Measurements
Conclusion

Experimental Cross-Section Formula


- Theoretical Cross-Section formula
 Integrate PDF's and partonlevel cross-section
- Experimental formula: Count number of signal events and devide by the integrated luminosity (JLdt) of the data-set
 - Need to correct for background events B
 - Branching Ratio
 - Event selected efficiency ε=A·C
 - Acceptance A
 - Detector Correction C

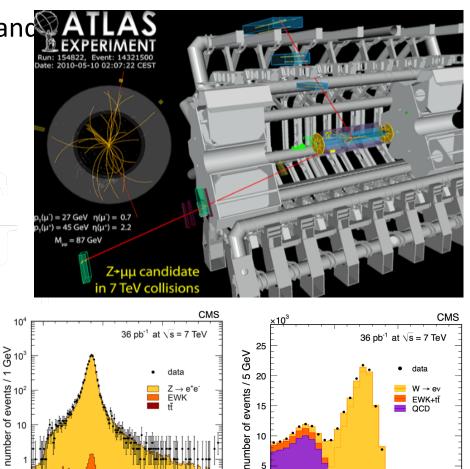
$$egin{array}{rcl} \sigma_{p_Ap_B
ightarrow n}&=&\sum_q\int dx_adx_b\int f_{a/A}(x_a,Q^2)f_{b/B}(x_b,Q^2) imes \ & imes [\hat{\sigma}_0+lpha_s(\mu_R^2)\hat{\sigma}_1+....]_{ab
ightarrow n}, \end{array}$$

$$\sigma \times BR = \frac{N_{obs} - N_{bkg}}{A \times C \times \mathcal{L}_{int}}$$


$$N_{reco.}^{reco.} \epsilon^{data}$$

$$C = \frac{N_{\rm MC}^{\rm reco.}}{N_{\rm MC}^{\rm gen, fiducial}} \times \frac{\epsilon^{\rm data}}{\epsilon^{\rm MC}}$$

What can we measure?


For each proton-proton colission we try to record all stable particles

- 4-vector (p_x,p_y,p_z,E) or (p_T,η,Φ,m) and charge of electrons and muons
 Pseudo-rapidity: η = -ln (tan(θ/2))
- 4-vector information of jets: Quark-, gluon- jets, b-, c-quarks, Tau's
- Missing transverse energy as a measure of the neutrino p_T in the transverse plane

Signal Selection

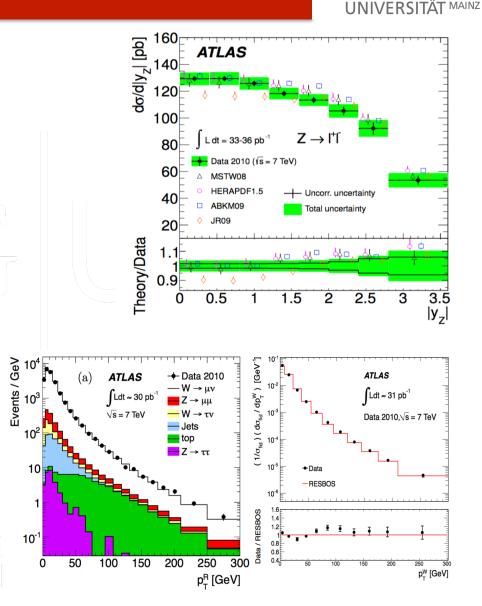
- Only leptonic decay channels of Z and W boson can be selected
 - otherwise: large multijet bkg
 - W \rightarrow ev, W \rightarrow μ v, Z \rightarrow μ μ , Z \rightarrow ee,
- Typical Z boson selection
 - 2 opposite charged leptons
 - Isolated and p_T>20 GeV
 - In detector volume: |η|<2.5</p>
 - 60<m_{ll}<120 GeV</p>
- Typical W boson selection
 - 1 isolated lepton
 - p_T>20 GeV
 - $E_T^{Miss} > 20 \text{ GeV}$
 - m_T>40 GeV

200

M(e⁺e⁻) [GeV]

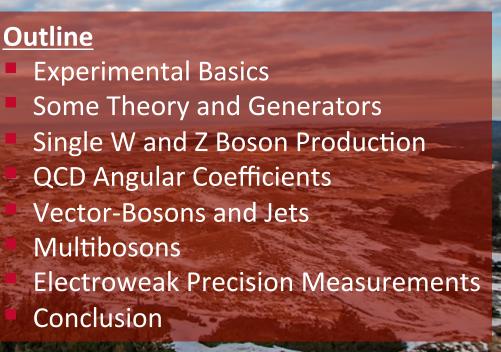
M_T [GeV]

150


Fiducial?, Differential?, Unfolding?

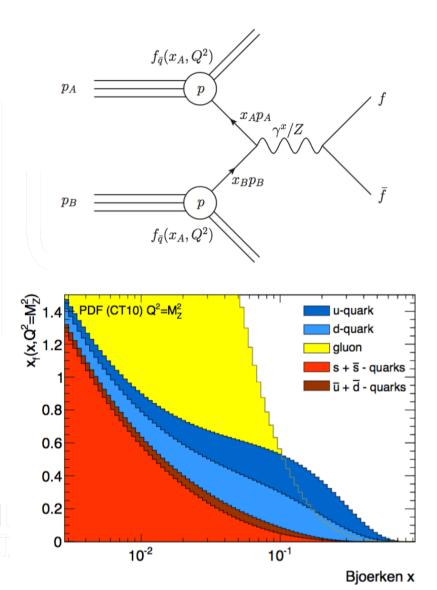
- Fiducial Cross-Section: This is the cross-section which we actually measure within our detector
 - $\sigma_{\text{fid}} = \sigma_{\text{incl.}} \cdot A$
 - Little impact of theory unc.

Differential Cross-Section:


Sometimes we want to know the cross-section in dependence of an observable,

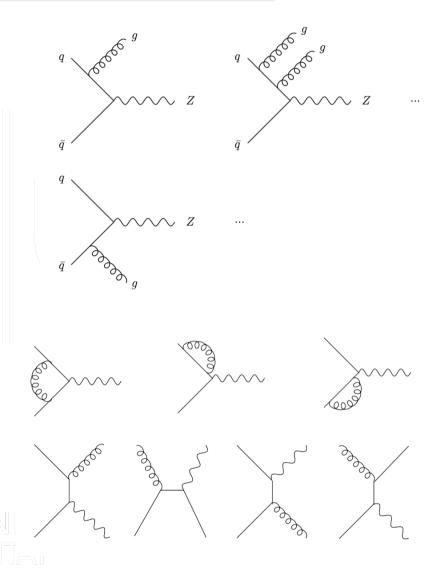
- e.g.: dσ/dy, dσ/dη, dσ/dp_T
- Measure cross-section in bins
- Unfolding: We transform a measured distribution to the "truth" distribution

Some Theory and Generators



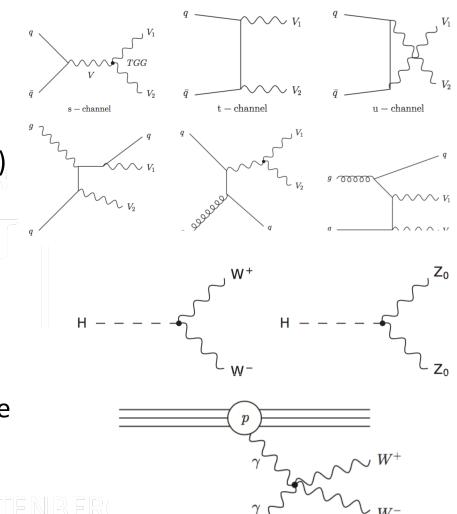
JOHANNES GUTEN

Tree-Level Diagrams


- Z/W Boson Production:
 - Quark + Antiquark annihilation
 - Two valence quarks at Tevatron
 - One valence and one see-quark at LHC
- Typical Björken x-value0.001-0.1
- Rapidity to Boson is correlated with Björkeb x-value
 - Small rapidities $x_1 \approx x_2$
 - High rapidities x₁>>x₂, x₂<<x₁

Parton Shower, NLO and Matching

- Quarks in the initial state can radiate gluons: ISR
 - Lead to transverse momentum of vector bosons
 - Described by Parton Shower Models (lots of free parameters to tune)
- Available since several years: procedures to match PS with NLO diagrams (i.e. No double counting)
- Resummation: Summing up all gluon emmissions to all orders



DiBoson Production

- Production of single boson production has little to do with the Electroweak-Sector of the SM
- The Electroweak sector (SU(2)xU(1)) predicts self-interactions of vector bosons
 - Triple-Gauge Couplings
 - Quadratic-Gauge Couplings
- Measuring Di-boson/Multi-boson final states tests the gauge-structure of the electroweak sector
 - Deviations of the measured cross-sections would indicate new physics

Overview of Generators

- Most generators do a good job in basic distributions
- No generator can do everything to highest precision
 - Enormous progress in recent years: NLO/NNLO revolution
 - But: Lots of future work needed

	· · · · · · · · · · · · · · · · · · ·			
Program	Matrix-Element	Full Event	Merging/Matching	Functionality w.r.t.
-	$\mathscr{O}(\alpha_s)$	Generator		W/Z and
	$\mathcal{O}(\alpha_s)$	Generator		diboson production
Ρυτηια	LO	yes	matrix-element correction for first branching	inclusive production
HERWIG	LO	yes	matrix-element correction for hardest branching	inclusive production
MC@NLO	NLO	yes (interface to Herwig)	PS matching	inclusive production
aMC@NLO	NLO	yes (interface to HERWIG)	PS matching	inclusive production
PowhegBox	NLO	yes (interface to Pythia or Herwig)	PS matching	inclusive production
Alpgen	LO	no (but interface to Pythia/Herwig)	MLM (all parton multiplicities)	W/Z +Jets (incl. large. multipl.)
MadGraph	LO	no (but interface to PYTHIA)	n.a. (all parton multiplicities)	W/Z +Jets (incl. large multipl.)
Sherpa	LO	yes	CKKW (all parton multiplicities)	W/Z +Jets (incl. large multipl.)
Blackhat-Sherpa	NLO	no (only parton level)	n.a.	(incl. large multipl.) W/Z +Jets (incl. large multipl.)
ResBos	Resummation	no (only boson kinematics)	n.a.	$p_{\rm T}$ spectrum of W /Z bosons
MCFM	NLO	no (only parton level)	n.a.	NLO corrections to integral rates and shapes
Fewz	NNLO	no (only boson kinematics)	n.a.	NNLO corrections to integral rates and shapes

Single W and Z Boson Production

ΠΠ

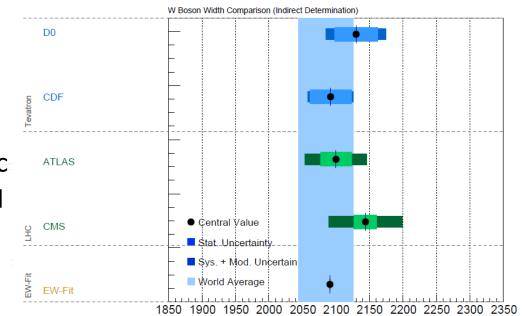
Ð


OutlineExperimental BasicsSome Theory and GeneratorsSingle W and Z Boson ProductionQCD Angular CoefficientsVector-Bosons and JetsMultibosonsElectroweak Precision MeasurementsConclusion

JOHANNES GUTENBERG

Inclusive Cross Section Results

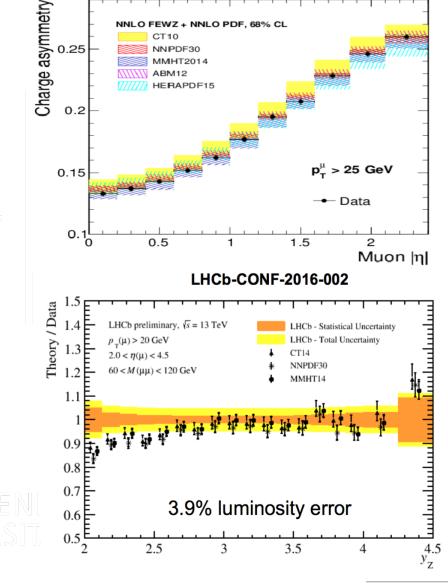
- In principle just counting, correcting for backgrounds and losses and dividing by integrated luminosity
 - Typically limited by luminosity uncertainty (1.5-2%)
- Idea: Use cross-section ratios to get more precise
 - Most systematics cancel!
- We already see here a large dependence on the PDF-sets used


W Boson Width

- Idea: Predict inclusive crosssection of W and Z bosons
 - We know the Z boson branching ratio
 - We can predict the leptonic
 BR of the W boson with SM

$$R_{lep} = \frac{\sigma_W}{\sigma_Z} \cdot \frac{\Gamma_{W^{\pm} \to l^{\pm} v}}{\Gamma_W} \cdot \frac{\Gamma_Z}{\Gamma_{Z \to l^+ l^-}}$$

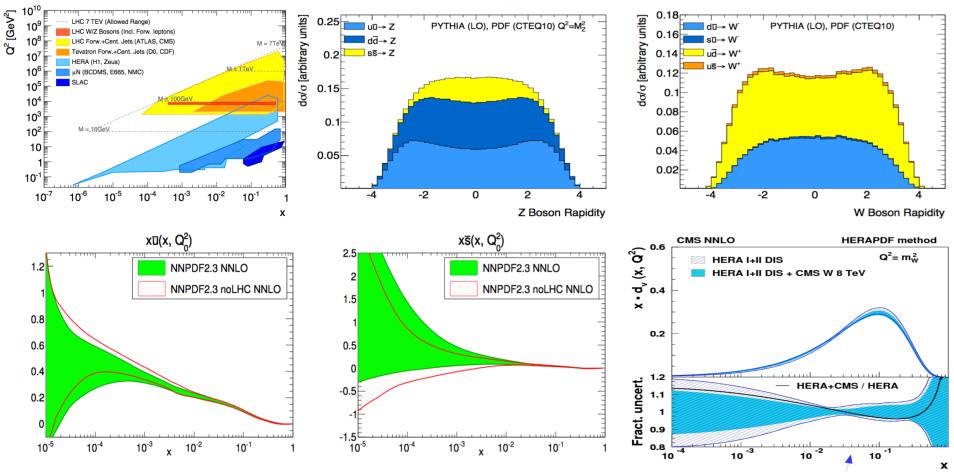
 Just measure the W and Z boson cross-section in the leptonic decay channels and derive the W boson width


Γ_w [MeV]

Rapidity Dependence

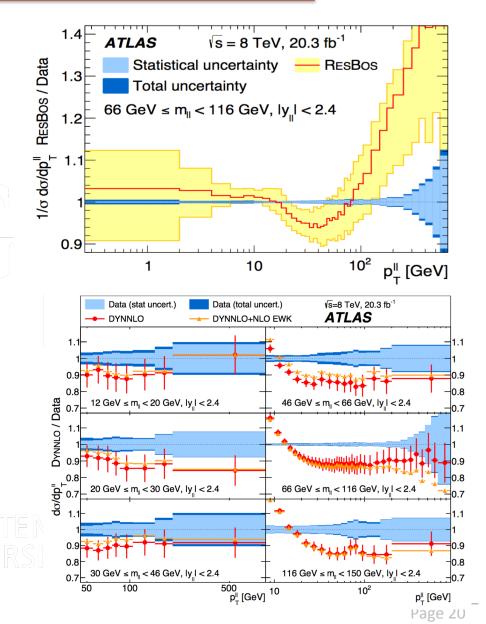
CMS, L = 18.8 fb⁻¹ at √s = 8 TeV

- Rapidity is correlated to Björken-x
- Z boson rapidity can be directly reconstructed
 - Measure cross-section in dependence of y_z
- W boson rapidity unkown due to neutrino
 - Use rapidity of the charges decay-lepton instead
 - Different production of W⁺ and W⁻, i.e. measure charge asymmetry vs. η


PDF Fitting

Idea: Use all available W/Z boson production cross-sections

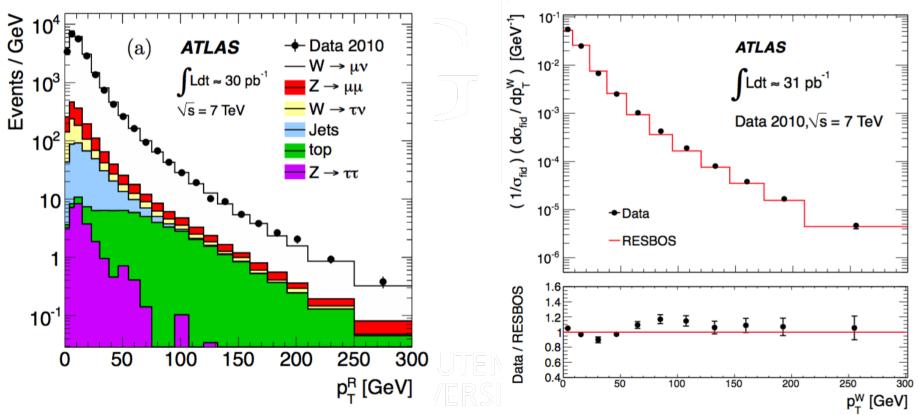
Use NNLO?-predictions of cross-sections


Adjust descriptions of PDFs so that they fit the data

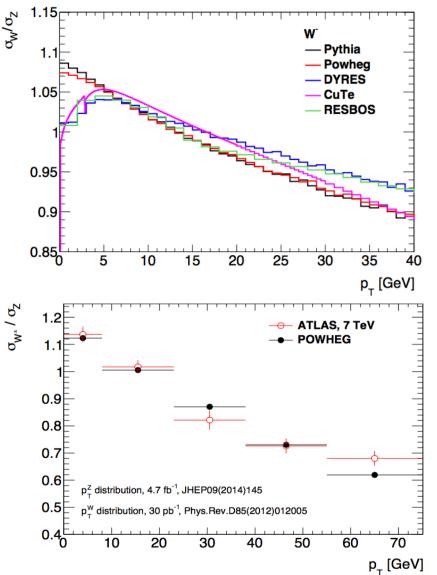
JProf. Dr. Matthias Schott

Z Boson Transverse Momentum

- Can be directly reconstructed by the 4-vectors of the two decay leptons
 - Very precise measurement
- Tests in some sense all what goes on in the initial state
 - PS-models, NLO corrections, Resummation, ...
- Three regimes to be tested
 - Low energy p_T(V)≈k_T
 - k_T<p_T(V)<m_V/2
 - m_v/2<p_T(V)



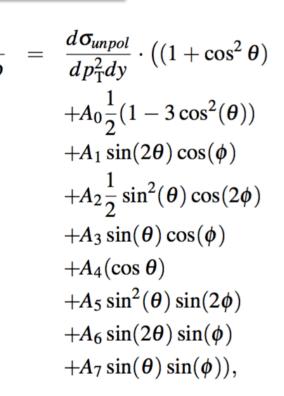
W Boson Transverse Momentum

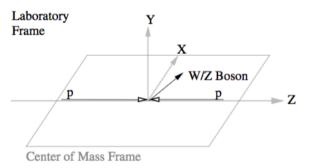

- We can't reconstruct the neutrino, i.e. we can't directly access pT(W)
 - Idea: Measure hadronic recoil, i.e. all the 'hadronic stuff' which balances the pT(W)
 - Problem: very imprecise, i.e. we expect large uncertainties

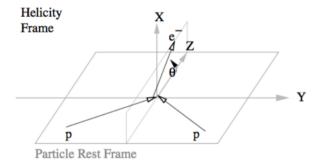
What do Generators predict?

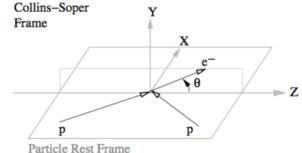
- We can tune our generators to the measured pT(W) and pT(Z) spectrum,
 - Or: compare the ratio of these two predictions
- Theory of pT(W) and pT(Z) should be very similar
 - Apart from heavy-quark contributions
- Different generators, predict different behaviours
 - Data favours PS models, i.e.
 There is some work to be done

QCD Angular Coefficients

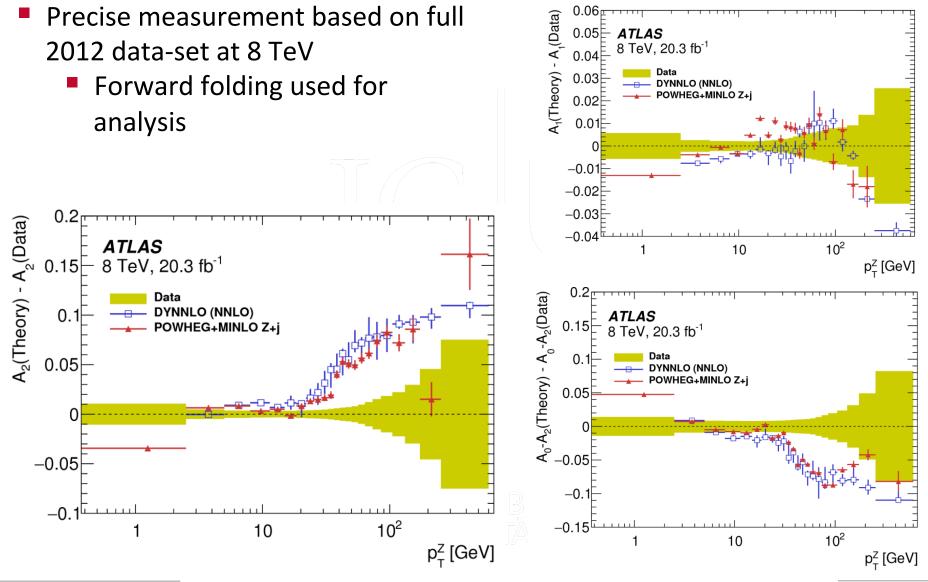





Outline
Experimental Basics
Some Theory and Generators
Single W and Z Boson Production
QCD Angular Coefficients
Vector-Bosons and Jets
Multibosons
Electroweak Precision Measurements
Conclusion

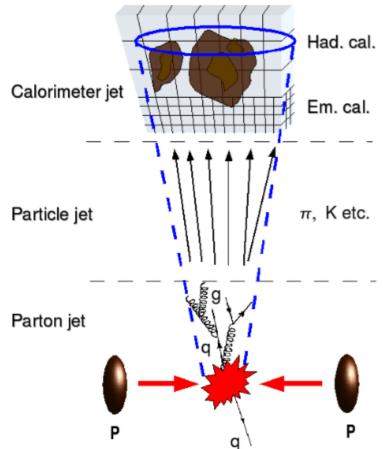

What are angular coefficients

- The general form of the differential dσ
 cross-section of the Drell-Yan proces: dp²/_Tdyd cos θdφ
 can be decomposed as a sum of
 harmonics in the Collin Soper Frame
- Usually θ w.r.t incoming parton
 - Unknown in proton-proton
 - Define frame, which "reduces uncertainty": CS-Frame (a restframe of vector boson)



Results from ATLAS

Vector Boson and Jets



Outline

Experimental Basics Some Theory and Generators Single W and Z Boson Production QCD Angular Coefficients Vector-Bosons and Jets Multibosons Electroweak Precision Measurements Conclusion

How to reconstruct Jets?

- At a very basic level: Look for energy clusters with a certain size in the calorimeter (actually little bit more complicated to get things ir-safe)
 - Variable: Cone-size of this cluster
- Experimental problem: What is the measured energy scale?
 - Rule of thump: jet-energy scale is very imprecise compared to energy scale of leptons
- Theoretical 'problem': Need also define jets on generator level, as we cannot unfold to final-state parton level

JProf. Dr. Matthias Schott

Number of Jets

- Several generators predict N-Jet final states on tree-level
- Probability that an additional parton is governed by a **Poisson distribution**
 - leading-order term for a V+n-jet final state

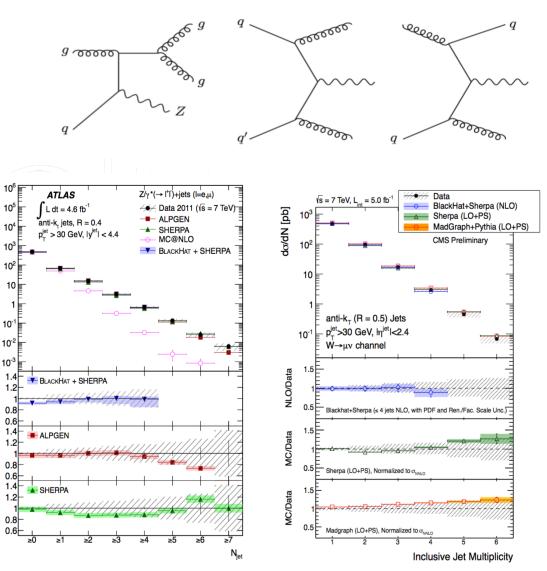
g

 $\sigma(\mathbf{Z}/\gamma^*(\rightarrow I^+\bar{I})+\geq N_{jet})$

10

NLO / Data

MC / Data

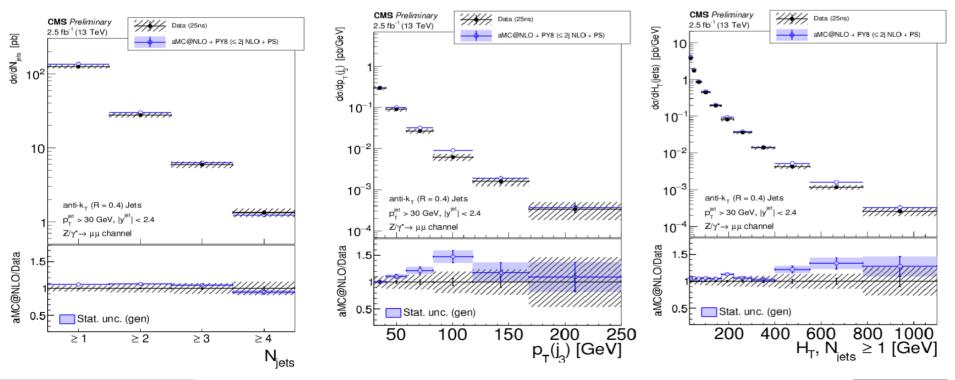

AC / Data

$$\sigma^{LO}_{V+n-jet} \sim rac{ar{n}e^{-ar{n}}}{n!}\sigma_{tot}$$

 $\frac{\sigma_{n+1}}{\sigma_n}$

At hadron colliders: Experimentally observed V +n-jet final state, has the form of

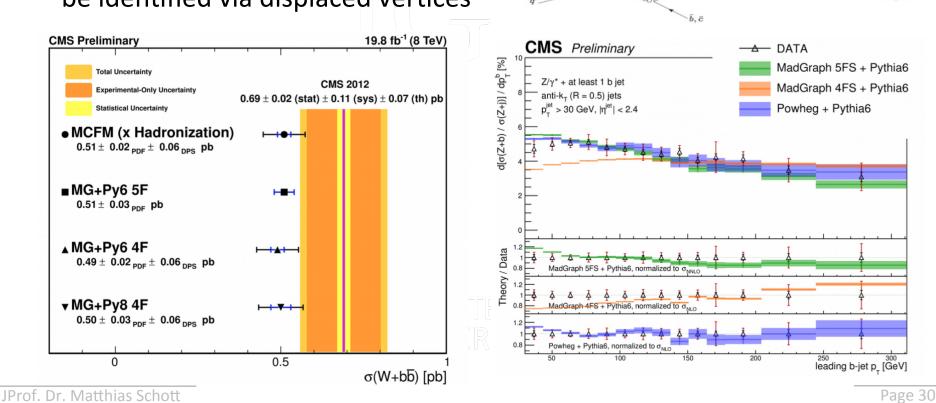
$$\sigma^{LO}_{V+n-jet}\sim\sigma_0 e^{-an}$$



Further Observables

- We can test more than the number of jets:
 - transverse momentum distribution of jets
 - their angular dependencies
 - H_{T} : Scalar sum of all jet energies (typically used as value of μ -scales)
 - Sensitive to missing HO corrections / BSM

Heavy Quarks



g 0000

a.00000000000000

9.0000000000000

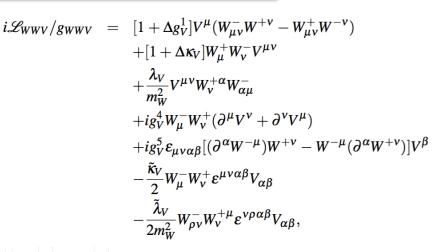
- Heavy quarks in final states in particular interesting:
 - PDF's, Backgrounds, Calibration, BSM
- Experimentally: b- and c-jets can be identified via displaced vertices

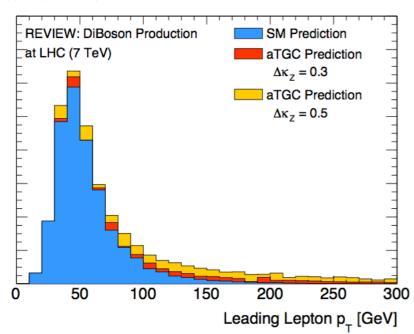
3995

Z, W

g

Multibosons

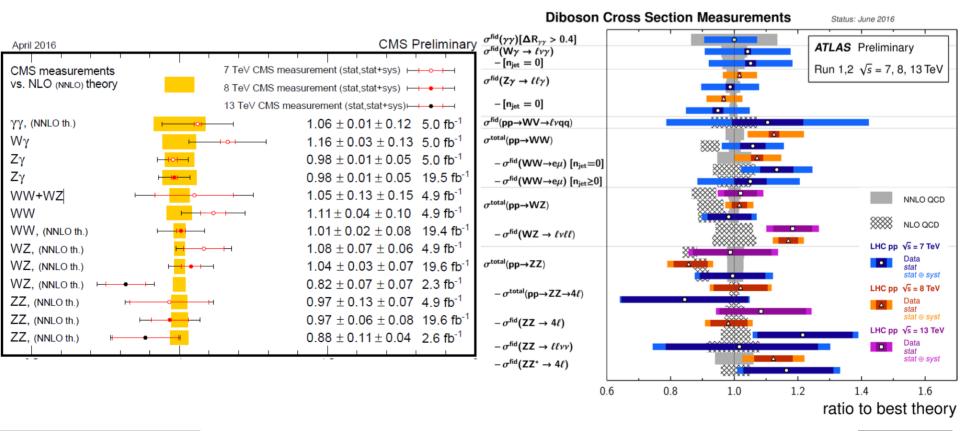



JOHANNES GUTENBERG UNIVERSITÄT MAIN

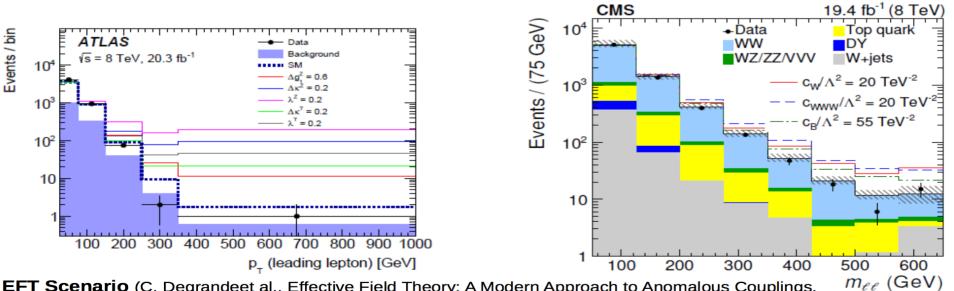
Outline Experimental Basics Some Theory and Generators Single W and Z Boson Production QCD Angular Coefficients Vector-Bosons and Jets Multibosons Electroweak Precision Measurements Conclusion

Triple Gauge Couplings and BSM

- Most general gauge invariant Lagrangian that describes the trilinear interaction of electroweak gauge boson
- Anomalous couplings are described by seven parameters for each of the WWV vertices: Δg_{v1} , $\Delta \kappa_v$, λ_v , $\tilde{\gamma}_v$ g_{v4} , g_{v5} , $\tilde{\kappa_v}$ and $\tilde{\lambda_v}$.
 - All aTGCs are equal to zero in the SM.
- Non-zero aTGC's lead to increased cross-sections
 - Harder p_T spectra of decay products

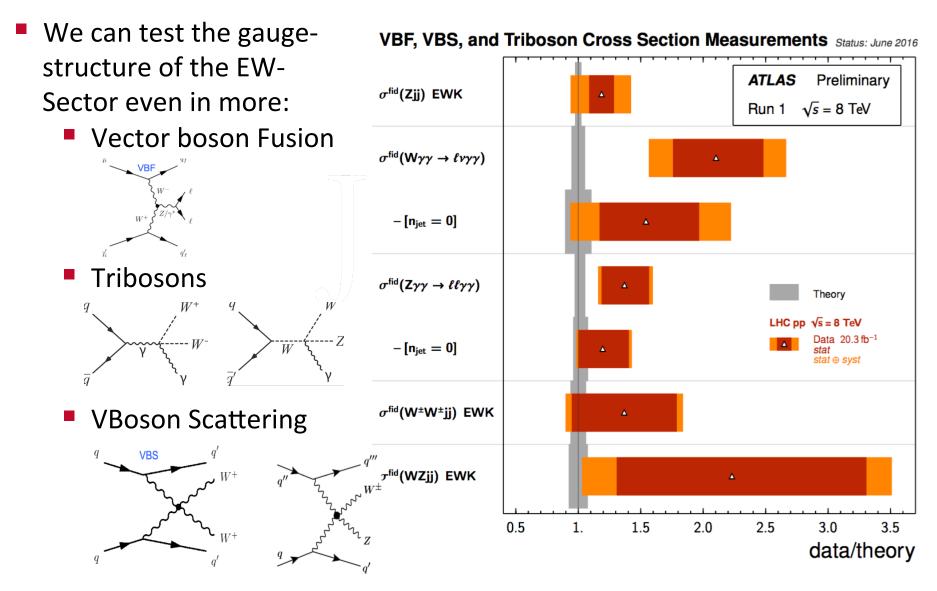


Results on DiBoson Cross-Sections

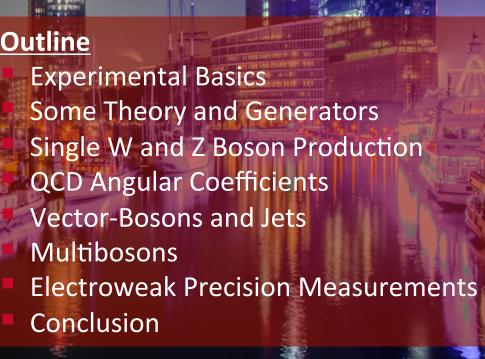


- Note (large!) difference between NNLO and NLO predictions
- Again: Very good agreement between predictions and measurements
 - "Complementary deviations" in ATLAS and CMS
 - Let's go differentially

Limits on aTGCs



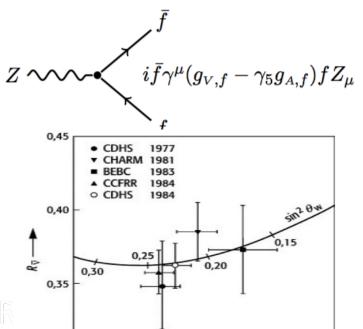
EFT Scenario (C. Degrandeet al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21–32, arXiv:1205.4231 [hep-ph]).


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mar 2016	Central ALLAS			6		Mar 2016	•	CMS					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Fit Value LEP			Ldt				DO	— •–	~		fr a	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Δκ.	⊢	WW [-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV		Fit value	LEP	⊢•⊣	Channel	Limits	JLdt	Vs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	H			20.3 fb ⁻¹		Ar				- Wγ	[-4.1e-01, 4.6e-01]	4.6 fb ⁻¹	7 TeV
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		⊢					Δκγ				W ₂	[-3.8e-01 2.9e-01]	5.0 fb ⁻¹	7 TeV
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H									•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		HH									WW		20.3 fb ⁻	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											ww	[-2.1e-01, 2.2e-01]	4.9 fb ⁻¹	7 TeV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										•	ww	[-1.3e-01, 9.5e-02]	19.4 fb ⁻¹	8 TeV
Image: constraint of the constraint	λ _z								1.1					
H WW [-2.4e-02] (-1.9.4 fb ⁻¹) 8 TeV H WZ [-1.6e-02, 1.6e-02] (2.3 fb ⁻¹) 8 TeV H WZ [-1.6e-02, 1.6e-02] (2.3 fb ⁻¹) 8 TeV H WZ [-1.6e-02, 1.6e-02] (2.3 fb ⁻¹) 8 TeV H WZ [-1.6e-02, 1.6e-02] (2.3 fb ⁻¹) 8 TeV H WZ [-3.6e-02, 4.0e-02] (3.6 fb ⁻¹) 7 TeV H WZ [-3.6e-02, 1.7e-02] (3.6 fb ⁻¹) 7 TeV MW [-3.9e-02, 1.7e-02] (3.6 fb ⁻¹) 7 TeV MW [-3.9e-02, 2.7e-02] (3.6 fb ⁻¹) 7 TeV MW [-1.9e-02, 1.9e-02] (2.3 fb ⁻¹) 8 TeV MW [-1.9e-02, 1.9e-02] (2.3 fb ⁻¹) 8 TeV MW [-1.9e-02, 1.9e-02] (2.3 fb ⁻¹) 7 TeV MW [-1.9e-02, 2.9e-02] (3.6 fb ⁻¹) 7 TeV MW [-1.9e-02, 2.9e-02] (3.6 fb ⁻¹) 7 TeV MW [-1.9e-02, 2.9e-02] (3.6 fb ⁻¹) 7 TeV MW [-1.9e-02, 2.9e-02] (3.6 fb ⁻¹) 7 TeV<														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											WV	[-1.1e-01, 1.4e-01]	5.0 fb ⁻¹	7 TeV
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1+1							- I	• • •	D0 Comb.	[-1.6e-01, 2.5e-01]	8.6 fb ⁻¹	1.96 TeV
Image: Note of the i		́н'								•	LEP Comb	[-9.9e-02.6.6e-02]	0 7 fb ⁻¹	0.20 TeV
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>								-				
Image: Comb. 1.55e-02, 1.7e-02 0.7 fb ⁻¹ 0.20 TeV Ag ² Image: Comb. 1.56e-02, 1.7e-02 0.7 fb ⁻¹ 0.20 TeV Mg ² Image: Comb. 1.56e-02, 1.7e-02 0.7 fb ⁻¹ 0.20 TeV Mg ² Image: Comb. 1.6e-02, 2.7e-02 20.3 fb ⁻¹ 8 TeV MW [-1.6e-02, 2.7e-02] 4.6 fb ⁻¹ 7 TeV MW [-1.6e-02, 2.9.3e-02] 4.6 fb ⁻¹ 7 TeV MVZ [-5.7e-02, 9.3e-02] 4.6 fb ⁻¹ 7 TeV MVZ [-5.7e-02, 9.3e-02] 4.6 fb ⁻¹ 7 TeV MVZ [-5.5e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV MVV [-5.5e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV MVV [-5.4e-02, 2.1e-02] 0.7 fb ⁺¹ 0.20 TeV MVV [-5.4e-02, 2.1e-02] 0.7 fb ⁺¹ 0.20 TeV		⊢ −−1				7 TeV	λ_{γ}		-		•			
Ag ² WW [3.9e.02, 5.2e.02] 4.6 fb ¹ 7 TeV WW [-1.6e.02, 2.7e.02] 20.3 fb ¹ 8 TeV WW [-9.5e.02, 9.5e.02] 20.3 fb ¹ 8 TeV WW [-9.5e.02, 9.5e.02] 4.6 fb ¹ 7 TeV WW [-9.5e.02, 9.5e.02] 4.6 fb ¹ 7 TeV WW [-9.5e.02, 9.5e.02] 4.6 fb ¹ 7 TeV WW [-9.5e.02, 9.3e.02] 4.6 fb ¹ 7 TeV WZ [-1.9e.02, 2.2e.02] 19.4 fb ¹ 8 TeV WZ [-1.9e.02, 2.9e.02] 20.3 fb ¹ 8 TeV H WZ [-3.6e.02, 4.4e.02] 8.6 fb ¹ WV [-5.5e.02, 7.1e.02] 0.7 fb ¹ 0.20 TeV H LEP Comb. [-5.4e.02, 2.1e.02] 0.7 fb ¹ 0.20 TeV <td></td> <td>⊢-• </td> <td></td> <td></td> <td>8.6 fb⁻¹</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Wγ</td> <td>[-5.0e-02, 3.7e-02]</td> <td>5.0 fb⁻¹</td> <td>7 TeV</td>		⊢-•			8.6 fb ⁻¹						Wγ	[-5.0e-02, 3.7e-02]	5.0 fb ⁻¹	7 TeV
∆g ² i WW [-3.9e-02, 5.2e-02] 4.6 fb ⁻¹ 7 TeV WW [-3.9e-02, 5.2e-02] 20.3 fb ⁻¹ 8 TeV WW [-4.8e-02, 4.8e-02] 4.9 fb ⁻¹ 7 TeV WW [-9.5e-02, 9.5e-02] 4.9 fb ⁻¹ 7 TeV i WW [-2.4e-02, 2.4e-02] 19.4 fb ⁻¹ 8 TeV WW [-4.7e-02, 2.2e-02] 19.4 fb ⁻¹ 8 TeV i WV [-3.9e-02, 4.0e-02] 4.6 fb ⁻¹ 7 TeV WZ [-5.7e-02, 9.3e-02] 4.6 fb ⁻¹ 7 TeV i WV [-3.9e-02, 4.0e-02] 4.6 fb ⁻¹ 7 TeV WZ [-1.9e-02, 2.9e-02] 20.3 fb ⁻¹ 8 TeV i WV [-3.8e-02, 3.0e-02] 5.0 fb ⁻¹ 7 TeV WV [-5.5e-02, 7.1e-02] 0.7 fb ⁻¹ 0.20 TeV i i D0 Comb. [-3.6e-02, 4.4e-02] 8.6 fb ⁻¹ 1.96 TeV LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV i i i 0.20 TeV -0.5 0 0.5 1 1.5 i 1.5		⊢∙								н	ww	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
WW [-1.6e-02, 2/e-02] 20.3 fb ⁻¹ 8 feV WW [-1.6e-02, 2/e-02] 20.3 fb ⁻¹ 8 feV WW [-1.6e-02, 2/e-02] 20.3 fb ⁻¹ 8 feV WW [-1.6e-02, 2/e-02] 19.4 fb ⁻¹ 8 TeV WW [-1.6e-02, 2/e-02] 19.4 fb ⁻¹ 8 TeV WW [-1.6e-02, 2/e-02] 19.4 fb ⁻¹ 8 TeV WZ [-1.9e-02, 2/e-02] 20.3 fb ⁻¹ 8 TeV WZ [-1.9e-02, 2/e-02] 20.3 fb ⁻¹ 8 TeV WZ [-1.9e-02, 2/e-02] 20.3 fb ⁻¹ 8 TeV WV [-3.8e-02, 3/e-02] 4.6 fb ⁻¹ 7 TeV WV [-5.5e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV WV [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV UP LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV UP LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV UP UP -0.5 0 0.5	Δg^{Z}	⊢−−− I										•		
Image: WW [-4.7e-02, 2.2e-02] 19.4 fb ⁻¹ 8 TeV WZ [-5.7e-02, 9.3e-02] 4.6 fb ⁻¹ 7 TeV WZ [-1.9e-02, 2.9e-02] 20.3 fb ⁻¹ 8 TeV WV [-5.5e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV WV [-5.5e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV UP WV [-5.6e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV UP UP UP UP UP UP UP UP UP (-5.6e-02, 7.1e-02] 4.6 fb ⁻¹ 7 TeV UP UP UP 00 Comb. [-3.6e-02, 4.4e-02] 8.6 fb ⁻¹ 1.96 TeV UP U	-1	H												
WZ [-5.7e-02, 9.3e-02] 4.6 fb ⁻¹ 7 TeV WZ [-1.9e-02, 2.9e-02] 20.3 fb ⁻¹ 8 TeV WZ [-1.9e-02, 2.9e-02] 20.3 fb ⁻¹ 8 TeV WZ [-3.4e-02, 8.4e-02] 8.6 fb ⁻¹ 7 TeV D0 Comb. [-3.4e-02, 8.4e-02] 8.6 fb ⁻¹ 1.96 TeV LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV -0.5 0 0.5 1 1.5		H								H	WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
Image: Here in the									H	H	WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
W2 1.55 -6-02, 7.1e-02 4.6 fb ⁻¹ 7 TeV WV 1.55 -6-02, 7.1e-02 4.6 fb ⁻¹ 7 TeV D0 Comb. [-3.4e-02, 8.4e-02] 8.6 fb ⁻¹ 1.96 TeV LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV -0.5 0 0.5 1 -0.5 0 0.5 1 1.5										—	WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
D0 Comb. [-3.4e-02, 8.4e-02] 8.6 fb ⁻¹ 1.96 TeV LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV -0.5 0 0.5 1 -0.5 0 0.5 1.5														
LEP Comb. [-5.4e-02, 2.1e-02] 0.7 fb ⁻¹ 0.20 TeV -0.5 0 0.5 1 -0.5 0 0.5 1 1.5														
-0.5 0 0.5 1 -0.5 0 0.5 1 1.5									н	€ļ	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
				0.10 02, 2.10 02]	0.7 10	0.20101			- I - I					I
aTGC Limits @95% C.L. aTGC Limits @95% C.L.	-0.5	0	0.5		1		(0.5		0	0.5	1		
								aTGC Lim	its @95	5% C.L.				
													-	

Vector Boson Fusion, aQGC, ...

Electroweak Precision Measurements

Summary of the Electroweak Sector

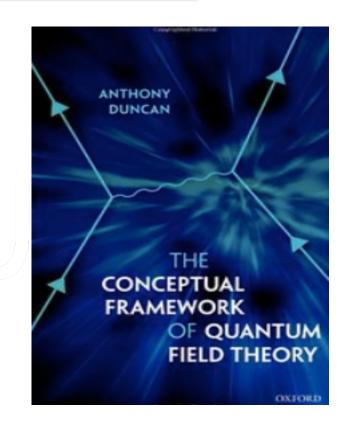


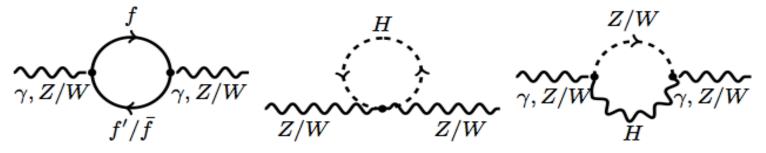
- The electroweak sector of the Standard Model has five parameters
 - α_{em}
 - G_F
 - m_w
 - m_z
 - sin²θ_w
 - (+ m_H for the scalar sector)
- However, they are not independent, but related by theory

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \quad M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

Consequence: Predictive power of ENBER the SM

0,30


0,30 └ 0,25


0,35

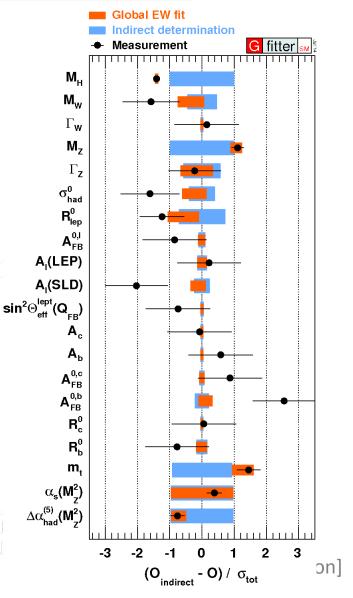
Radiative Corrections

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Lets test the predictive power and insert the measured values of m_z and sin²θ_w predict m_w
 - m_w^{tree} = (79.964±0.005) GeV
- Lets compare with the measurement:
 - m_w^{measured} = (80.385±0.015) GeV
- What went wrong?
 - Tree level relations are not sufficient
 - radiative corrections are needed

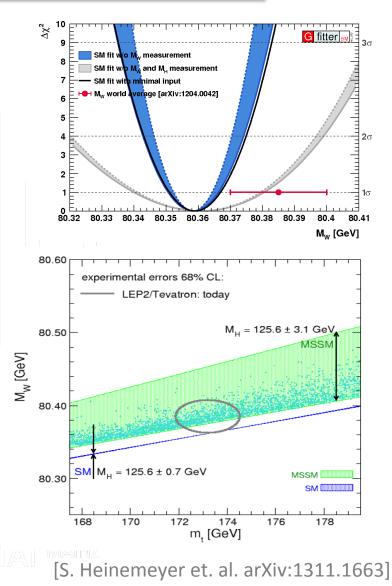
Radiative Corrections

- The impact of corrections stored in EW form factors helps to define effective coupling at Z-pole
- The relation between SM parameters appear with quadratic dependence on m_{top}, logarithmic dependence on M_H
- Idea of electroweak fits
 - Measure many different observables in the experiment
 - Calculate the relations between all observables in SM
 - Probe the consistency of the SM / Predict observables



$$\begin{split} \sin^2\!\theta_{\text{eff}}^f &= \kappa_Z^f \sin^2 \theta_W \\ g_{V,f} &= \sqrt{\rho_Z^f} (I_3^f - 2Q^f \sin^2\!\theta_{\text{eff}}^f) \\ g_{A,f} &= \sqrt{\rho_Z^f} I_3^f \\ M_W^2 &= \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right) \\ M_W \left(\ln(M_H), m_t^2, M_Z, \Delta \alpha_{\text{had}}^{(5)}(M_Z^2), \alpha_S(M_Z^2) \right) \\ \sin^2\!\theta_{\text{eff}}^f \left(\ln(M_H), M_H, m_t^2, M_Z, \Delta \alpha_{\text{had}}^{(5)}(M_Z^2), \alpha_S(M_Z^2) \right) \end{split}$$

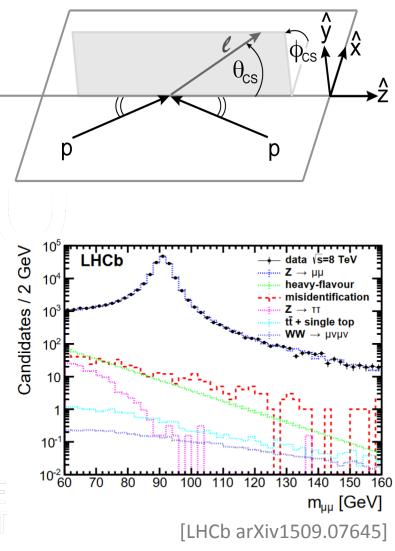
Input to the Global Electroweak Fit


- Input for the gobal electroweak fit mostly from
 - LEP: Z boson observables
 - Tevatron: W boson, top quark mass
 - LHC: Higgs Boson, top quark mass (see dedicated top-session)
- Note: improvement on m_H precision leaves fit unchanged
- Improvement on m_{top} will be limited by theoretical uncertainty on pole-mass definition
- Largest discrepancy between A_I(SLD) and A_{FB}^{0,b}, both sensitive to sin²θ_W

What we need: m_W , m_{top} , $sin^2\theta_W$

- "Simple" thing: Test consistency of the Standard Model
 - Current p-value = 0.22
 - In order to match the m_{top} precision, we would need $\Delta m_W < 5$ MeV
 - Side-Note: also no F_w
 measurement at LHC yet
- Electroweak precision measurements are sensitive to several new physics scenarios, e.g. SUSY
 - Radiative correction depends on mass splitting (Δm²) between squarks in SU(2) doublet
 - Precision on m_w could significantly limit the allowed MSSM space

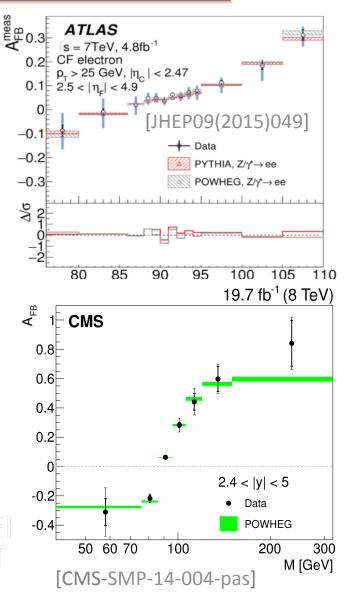
How to measure $\sin^2\theta_w^{eff}$?


Forward-Backward Asymmetry

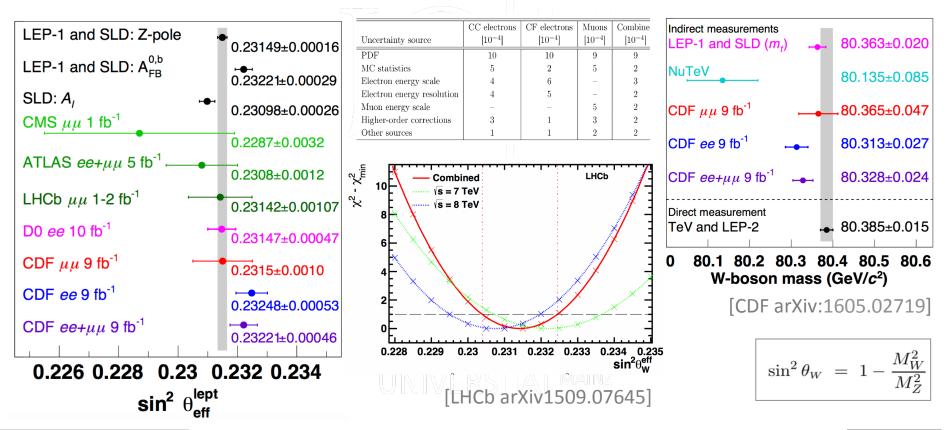
- Z couplings differ for left- and right-handed fermions
- Define A_{FB} in Collin-Soper Frame
 - Defined w.r.t. to incoming quark and outgoing lepton

$$A_{\rm FB} = \frac{N_{\cos\theta_{\rm CS}^* \ge 0} - N_{\cos\theta_{\rm CS}^* < 0}}{N_{\cos\theta_{\rm CS}^* \ge 0} + N_{\cos\theta_{\rm CS}^* < 0}}$$

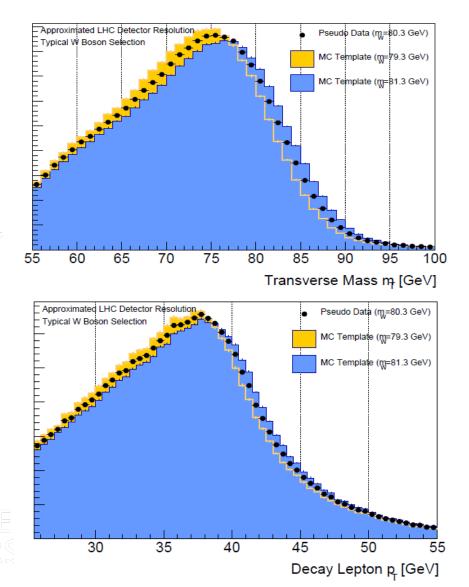
 A_{FB} linked to the weak mixing angle, via the relation


$$A_{FB} = \frac{16}{3} \cdot \frac{(1 - 4|Q_f|\sin^2\theta_W)}{1 + (1 - 4|Q_f|\sin^2\theta_W)^2} \cdot \frac{(1 - 4|Q_{f'}|\sin^2\theta_W)}{1 + (1 - 4|Q_{f'}|\sin^2\theta_W)^2} = UNIVERSITAT$$

Results from the LHC


- LHC-Challenge: where is the quark?
 - Misidentified quark-direction results in dilution of A_{FB}
 - Forward Z events have smallest dilution effects! LHCb!
- A_{FB} measured as a function of $m_{\mu\mu}$ (LHCb) and $m_{\mu\mu}/m_{ee}$ (ATLAS/CMS)
- Measurement approach
 - Use template fitting to extract sin²θ_w
 - Alternative: Publish unfolded measurement of A_{FB} and decouple extraction of sin²θ_W

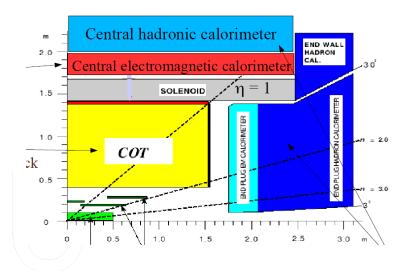
Overview and Reachable Precision

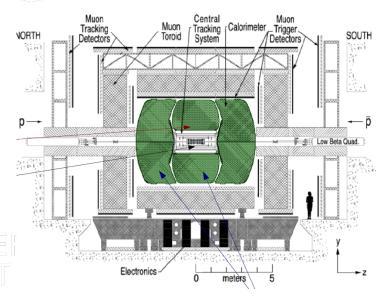

- Dominating uncertainties due to PDFs
- LEP and SLD measurement still most precise measurement
 - new CDF measurement gets close to solve discrepancy
 - Profiling during sin² θ_w fit might be able to improve PDF uncertainties

How to measure W boson mass?

- Basic approach to measure W boson mass is a template fit
- Relevant observables
 - Lepton transverse momentum
 - Transverse mass
 - (missing transverse energy)
- Relies on perfect understanding of
 - Detector response
 - Physics modelling
- Expect different physics modelling effects for W⁺, W⁻ and different rapidities

Latest Results from CDF and D0

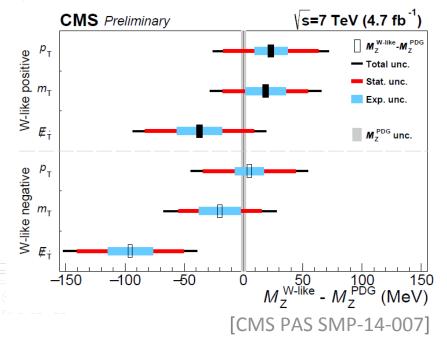

- Proton / anti-proton collisions reduce impact of heavy quarks
 - No differences between W⁺/W⁻
 - Simplier extrapolation from Z to W
 - Low pile-up
- CDF measurement in e/mu channel
 - Only 20% of data-set used
 - Calibration via J/Psi, Upsilon and Z
- D0 uses only electron channel
 - Acceptance up to η<1.0</p>
 - Parameterized simulation
- D0 started a first effort to allow for an easy reavaluation of m_w with new PDF-sets


Source	$CDF\ m_T(\mu,\nu)$	$CDFm_T(e,\nu)$	$\overline{T} m_T(e, u) \mid D {oldsymbol{\mathcal{Q}}} m_T(e, u)$							
Experimental – Statistical power of the calibration sample.										
Lepton Energy Scale	7	10	16							
Lepton Energy Resolution	1	4	2							
epton Energy Non-Linearity			4							
Lepton Energy Loss			4							
Recoil Energy Scale	5	5								
Recoil Energy Resolution	7	7								
Lepton Removal	2	3								
Recoil Model			5							
Efficiency Model			1							
Background	3	4	2							
W production and decay model – Not statistically driven.										
PDF	10	10	11							
QED	4	4	7							
Boson p_T	3	3	2							
[Phys.Rev. D88 (2013)]										
		D⊘ run llb12								
		arXiv:1203.0293v2								
	► ⊢ •	CTEQ6.1								
		• • • •	preservation							
	⊢ •●	e	MSTW08NLO							
₩B ++++++++++++++++ 80.2480.2680.28 80.3 Wor	→→→ →→→→ →→→→→→→→→→→→→→→→→→→→→→→→→→→	0.38 80.4 80.42	preservation							

Possible Updates

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Factor 2-5 more statistics available
- Newer PDF sets, e.g. CT10W include more recent data
 - Dominant sources of W mass uncertainty are the *d*-valence and *d-u* degrees of freedom
 - Inclusion of all LHC results on W⁺,
 W⁻ and Z will also help to improve Tevatron measurements
- Improvement in theoretical predictions of p_T(W/Z) needed in order to accommodate measured p_T(W/Z) spectra at Tevatron/LHC


LHC: Still Testing with Z Bosons

JG

JOHANNES GL

- The full detector response calibration of the m_W measurement can be tested to a large extend by "remeasureing" the Z boson mass, mimicing the W
 - Turn one decay lepton in a pseudo neutrino
- CMS note using 7 TeV data
 - Validation of muon calibration
 - Statistically dominated (More in Nenad's talk)
- Model uncertainties cannot be easily transfered from Z to W
 - Also some detector systematics have to be treated carefully

	$M_{ m Z}^{ m W_{ m like}+}$		$M_{ m Z}^{{ m W}_{ m like}-}$			
Sources of uncertainty		m _T	₽́T	pT	m_{T}	₽́T
Lepton efficiencies		1	1	1	1	1
Lepton calibration		13	14	12	15	14
Recoil calibration		9	13	0	9	14
Total experimental syst. uncertainties		17	19	12	18	19
Alternative data reweightings		4	5	14	11	11
PDF uncertainties		5	5	6	5	5
QED radiation		23	24	23	23	24
Simulated sample size		6	8	7	6	8
Total other syst. uncertainties		25	27	28	27	28
Total systematic uncertainties		30	32	30	32	34
Statistics of the data sample		36	46	39	35	45
Total stat.+syst.		47	56	50	48	57

Conclusions

Experiments reach ultimate precision frontier in cross-section measurements: Often uncertainty in differential cross-sections below 0.5% NNLO revolution ongoing – lots of work on the theory side left First electroweak precision measurements at the LHC are about to come