

CMS Experiment at LHC, CERN Data recorded: Sat May 7 04:15:29 2016 CEST Run/Event: 272775 / 36556333 Lumi section: 49

Heavy Quarks and Top Production at the LHC

Roberto Tenchini (INFN Pisa)

CTEQ - MCnet School 2016 - DESY

10th July 2016

Charm, bottom and top

- Strong mass hierarchy: charm and bottom are called heavy quarks, but the heavier is top, with a mass comparable to a tungsten atom !
- Yukawa quark-Higgs couplings

$$Y = \sqrt{2} \frac{m}{v.e.v.(\sim 246 \text{ GeV})}$$

 top – Higgs Yukawa coupling is ≈1
 top is a window to electroweak symmetry breaking

The privilege of being heavy

- Experimentally, charm bottom top share several signatures
- Secondary vertexes
 - For c, b originating from long lived charm and beauty hadrons
 - For t from bW decay

Leptons

- For c, b from high semileptonic branching rations
- For t from bW decay

The privilege of being even more heavy

- Experimentally, charm & bottom are very different from top
- Exclusive states are key signatures for c and b
 - quarkonia, D and B mesons
- Exclusive states are not formed for top
 - Very short lifetime: bound states are not formed, opportunity to study a free quark

$$\tau_{t} = \frac{1}{\Gamma_{t}} \sim 0.5 \times 10^{-24} s < \frac{1}{\Lambda_{QCD}} < \frac{m_{t}}{\Lambda_{QCD}^{2}} \sim 3 \times 10^{-21} s << \tau_{b} \sim 10^{-12} s$$

$$\tau_{t} < \tau (hadronization) < \tau (spin - decorrelation) << \tau_{b}$$

Basic ingredients of cross section measurements (example with leptons)

σ=(Nsignal-Nbackground)/(efficiency x luminosity)

- Trigger on leptons $(e,\mu,\tau) \rightarrow p_t$, isolation cuts if applicable
- Offline lepton selection → cuts with improved reconstruction, define acceptance in fiducial region

– need to measure efficiencies from data !

- Suppress background (e.g. suppress jet production with transverse mass cut)
 - need to measure background from data !
 - (typical bkg: leptons from b,c decays, decay in flights of π,
 K, conversions γ→e⁺e⁻,etc.)
- Need information on accelerator luminosity

example from 2010: μ+μ- inv mass spectrum, after trigger selection (very low trigger thresholds !)

Need dedicated trigger streams at LHC Run II

various dimuon triggers.

Efficiency for tight muons to pass the isolation cut. Agreement between data and MC is very good.

Measure efficiency from data (Tag and Probe)

- 1. Find a good electron in a $Z \rightarrow ee$ event that meets Tag criteria
- 2. Loop over ECAL-tower clusters in the event with transverse energy above, e.g., 15 GeV and calculate the cluster-Tag invariant mass (M)
- 3. The cluster satisfying, e.g. : 82<M<100 GeV is a Probe

Luminosity determination

The method is known as "Van Der Meer scan"

Beam intensities and crossing frequency are known with good accuracy The effective overlap area A can be determined by scans in separation

Details : LHC Report 1019 by Grafstrøm Burkhardt http://cdsweb.cern.ch/record/1056691

CHARM AND BOTTOM PRODUCTION (SOME RELEVANT EXAMPLES)

J/psi as a window to c and b

J/Psi and $\psi(2s)$ prompt cross sections

Data available at a wide pT and rapidity range

From J. Walder, BEAUTY 2016

Prompt J/psi and NRQCD

- Long standing disagreement in quarkonia production with theory until realized octet production had to be taken into account
- Requires input from Long Distance ME (growing evidence of universality)

Non prompt fraction

Strong fraction
dependence from pT
Reasonably well
described from current
simulations

Charm production from exclusive states

B production from exclusive states

Important inputs to simulations General description OK, especially for NLL-based calculations

 $d\sigma(pp \rightarrow B^+X)/dp_T [\mu b/GeV]$ Data (13 TeV, ly_Bl<2.4) Data (7 TeV, ly_l<2.4) FONLL (13 TeV, ly_l<2.4) FONLL (7 TeV, ly_I<2.4) PYTHIA (13 TeV, Iy_I<2.4) PYTHIA (7 TeV, ly_l<2.4) 10⁻¹ 10⁻² 10⁻³ dσ / dσ_{FONLL} 1.5 0.5 20 60 100 40 80 0 $p_{\tau}(J/\psi K^{\pm})$ [GeV]

50.8 pb⁻¹ (13 TeV)

Differential cross sections: example from BB angular correlations

a ar

g

Pair creatic

- Provide information about the underling production subprocess, e.g. and and a subprocess
 - flavour creation
 - flavour excitation
 - gluon splitting
- sensitive test of pQCD leading-order (LO) and nextto-leading order (NLO) cross sections and their evolution with event energy scales

Associate production, an example: W+charm

Probes the strange content of the proton
contribution from d quark about ~10%
(Cabibbo suppressed)

• Different PDFs assume different level of suppression of s-quark w.r. to d-quark sea.

TOP PAIR PRODUCTION (AGAIN, SELECTED TOPICS, THIS IS NOT A REVIEW)

Top Quark Production at the LHC

Top Quark decays

It decays almost excusively to Wb, from CKM elements V_{tu} , V_{ts} , V_{th} :

W decays are used to classify top final states

Decay topologies for ttbar : • Dileptonic

- Lepton+jets
- Fully hadronic

For single top measurements only W leptonic decays are used

ttbar topologies

Inclusive cross section from leptons+jets and dileptons (e, μ)

Data

Top

Wbx

Wcx

Single Top

W+LF Jets

Z + J ets

QCD

• Excellent background control thanks to jet categorization, b tagging and in situ measurement of jet-energy scale

Inclusive cross section computed at NNLO (+NNLL)

- Uncertainties
 - Scales: ~ 3 %
 - PDF (68% cl): ~ 2 3 %
 - Top mass: ~ 3 %
 - Coupling: ~ 1.5 %

good perturbative convergence

Collider	$\sigma_{\rm tot} ~[{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV $$	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8\%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	$^{+22.7(2.4\%)}_{-33.9(3.6\%)}$	$^{+16.2(1.7\%)}_{-17.8(1.9\%)}$

Inclusive top pair cross-sections

- All channels covered and consistent with SM
- Good agreement with NNLO+NNLL
- Precision of ~4% (di-lepton channel), similar to theoretical prediction

Inclusive ttbar cross section and bounds on stop

use ttbar cross section for top mass and α_{s}

[arXiv:1307.1908, arXiv:1406.5375]

- Measure cross section in the most precise channel: dilepton eµ
- Use recent NNLO calculation (*) of top pair cross section to extract m_t
- Provides also a measurement of α_s
- The method takes advantage of the excellent luminosity knowledge at LHC (~2%), which is also the long-term experimental limitation, together with the knowledge of the LHC beam energy

$$m_{t} = 176.7_{-2.8}^{+3.0} \text{ GeV}$$

$$\alpha_{s} = 0.1151_{-0.0027}^{+0.0028}$$

Top mass extraction from cross section measurements

Running of $\alpha_{\rm s}$ - a very precise point from ttbar -

Differential cross sections

- Important measurements, they will play an important role for
 - investigate limitations of present MC (which QCD predictions and models describe our data best, in the search areas like high m(tt) and high multiplicities)
 - ii) provide independent interpretations (e.g. mass AND alpha_s from cross section)
 - Iii) sensitivity to high-x gluon (y(tt))

top p_T differential distribution

full NNLO calculation seem confirm observed slope, in direction closer to the data

Jet Multiplicity at $\sqrt{s} = 13$ TeV

- Low jet multiplicities → Sensitive to Matrix element and matching to parton shower.
- High jet multiplicities
 parton shower
- tt+jets important background to ttH.

- New ME generator + PS codes in Run II
- Predictions overshoot the data for jet large multiplicities when out of the box parameters are used

Spin correlations in ttbar

Another tool to investigate the production mechanism, possible only for the top quark Investigating it now, but will become a precision tool with high statistics

$\Delta \phi$ results from ATLAS and CMS

can extract limits to chromomagnetic dipole moments or to probe SUSY (stop) -0.050 < $Re(\hat{\mu}_t)$ < 0.076 (95% CL) (CMSTOP-14-023)

$$f = \frac{N_{SM}}{N_{SM} + N_{non-SM}}, \quad f_{SM} = 1$$

SINGLE TOP

Single top t-channel

single top polarization in t-channel

• V-A current, top 100% polarized !

single top tW channel

- Final state similar to top pair production
 - just miss one b in 5 flavour scheme
- At higher order interference with top pair
 - requires operative definition of cross section
- Experimentally not easy to separate from top pairs

Single top s-channel

 $\sigma_s = 4.8 \pm 1.1 \text{ (stat.)}_{-2.0}^{+2.2} \text{ (syst.)pb}$ Significance: $3.2\sigma \text{ (exp. } 3.9\sigma)$

Uses the Matrix Element method to squeeze out optimal sensitivity...

2-jet 2-tag (\sim 4.3% of *s*-channel)

Consistent with SM expectation: $\sigma_{s-ch.}^{theory} = 5.61 \pm 0.22 \text{ pb}$

First EVIDENCE of the *s*-channel production at LHC

Single Top: the complete picture

single top cross section vs sqrt(s)

Single top in t and s channel sensitive to different aspects of New Physics (tW, too !)

Single top and $|V_{tb}|$

ATLAS+CMS Internal	LHC <i>top</i> WG	Sep 2015		
$I_{LV}V_{tb}I = \sqrt{\frac{\sigma_{meas.}}{\sigma_{meas.}}}$ from single top quark production				
σ _{thee} : NLO+NNLL MSTW2008nnio PRD83 (2011) 091503, PRD82 (20 PRD81 (2010) 054028	010) 054018,	total theo.		
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF m _{top} = 172.5 GeV		$If_{LV}V_{tb}I \pm (meas.) \pm (theo.)$		
t-channel:				
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	┝┿┋═┼╌┥	$1.02 \pm 0.06 \pm 0.02$		
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	⊢ ■	$0.97 \pm 0.09 \pm 0.02$		
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	⊢ •1	1.020 ± 0.046 ± 0.017		
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	<mark>⊢ Ie</mark>	0.979 ± 0.045 ± 0.016		
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊢ e</mark> ⊢	0.998 ± 0.038 ± 0.016		
Wt:				
ATLAS 7 TeV		$1.03^{+0.15}_{-0.18} \pm 0.03$		
PLB 716 (2012) 142-159 (2.05 fb ')		4 04 + 0.16 + 0.03		
CMS / TeV PBL 110 (2013) 022003 (4.9 fb ⁻¹)		1.01 - 0.13 - 0.04		
ATLAS 8 TeV (*)		1.10 ± 0.12 ± 0.03		
ATLAS-CONF-2013-100 (20.3 fb ') CMS 8 TeV'	F	1.03 ± 0.12 ± 0.04		
PHL 112 (2014) 231802 (12.2 fb ⁻⁺)		1 00 0 0 11 0 00		
ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009		$1.06 \pm 0.11 \pm 0.03$		
Wt:				
ATLAS 8 TeV ^{1,2} paper in preparation (20.3 fb ⁻¹)	⊢ →+ ≈ +→4	$1.01 \pm 0.10 \pm 0.03$		
s-channel:				
ATLAS 8 TeV ² ATLAS-CONF-2015-047 (20.3 fb ⁻¹)		$0.93^{+0.24}_{-0.30} \pm 0.04$		
(*) Superseeded by results shown	below the line	¹ including top-quark mass uncertainty ² including beam energy uncertainty		
0.4 0.6	0.8 1 1.2	1.4 1.6		
	If _{LV} V _{tb} I			

ASSOCIATED PRODUCTION OF TOP AND BOSONS (AND MORE ...)

Associated production of top pair and **vector** boson

- The ttZ process provides direct access to Z-top couplings
- Both ttW and ttZ processes can be altered by BSM physics
- Measured ttW and ttZ cross sections with 19.5 fb⁻¹ of data collected at 8 TeV
- Measurement performed in multilepton (e or μ) final states
 - ttZ measured in channels with two, three, or four leptons, with exactly one pair of same-flavor opposite-sign (OS) leptons close to the Z mass.
 - ttW measured in in channels with two same-sign (SS) leptons or three leptons, where no lepton pair is consistent with coming from a Z boson decay.
 - <u>full or partial reconstruction of the ttW or ttZ system</u> with a linear discriminant that matches leptons and jets to their parent particles using mass, charge, and b tagging information.

ttV: Observation !

ttZ couplings

Constraints on dimension-6 operators

operator	best fit point(s)	1σ CL	2σ CL
\bar{c}_{uB}	-0.07 and 0.07	{-0.11, 0.11}	{-0.14, 0.14}
\bar{c}'_{HO}	0.12	{-0.07, 0.18}	{-0.33, -0.24} and {-0.02, 0.23}
\bar{c}_{HQ}	-0.09 and 0.41	{-0.22, 0.08} and {0.24, 0.54}	{-0.31, 0.63}
\bar{c}_{Hu}	-0.47 and 0.13	{-0.60, -0.23} and {-0.11, 0.26}	{-0.71, 0.37}
¯c _{3W}	-0.28 and 0.28	{-0.36, -0.18} and {0.18, 0.36}	{-0.43, 0.43}

Associated production of top pair and scalar boson

- The ttH process gives direct access to the top-Higgs Yukawa coupling.
- The process can be altered by BSM physics

Н

g

- Searched with 5.1 fb⁻¹ at 7 TeV and 19.7 fb⁻¹ of at 8 TeV
- Measurement performed in several final states
 - top pair all hadronic, lepton+jets, dilepton
 - − with H→hadrons, H→ leptons, H→ $\gamma\gamma$
 - categorization includes ${\rm H}{\rightarrow}\,{\rm bb}$ and ${\rm H}{\rightarrow}\,\tau\tau$

Results for ttH search

Associated production of single top and Higgs boson

- The two diagrams interfere destructively in the SM (σ =18 fb), but with flipped sign cross section increases by a factor 15
- Analysis performed in the H→γγ channel, zero events found, upper limit at 4.1 times the flipped sign case

 $tHq \rightarrow (t \rightarrow b\ell\nu)(H \rightarrow \gamma\gamma)q$ with $\ell = e, \mu$

CMS HIG-14-001

Search for Dark Matter produced in association with top pairs

- Dark matter could couple to heavy fermions through contact interactions
- Search requires the presence of one lepton, multiple jets, and large missing transverse energy.

Conclusions

 Charm and Bottom production measurements at LHC an important playground for QCD and MC tuning

- Considerable improvements in understanding of quarkonium production

 Top production (in pair or singly) provides key information to many aspects (QCD, searches) and represents an important sector of electroweak-symmetry-breaking studies

- A complement to direct Higgs measurements

- After first three years at 7, 8 TeV (Run 1) LHC now entered a new phase (Run 2) at higher c.m. energy, 13 TeV, and at design luminosity (recently surpassed 10³⁴cm⁻²s⁻¹)
- Entering uncharted territory in terms of (statistical) precision: will use statistics as a tool to reduce systematic uncertainties