

Introduction to Event Generators 2

Torbjörn Sjöstrand

Theoretical Particle Physics Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden

CTEQ/MCnet School, DESY, 10 July 2016

The Parton-Shower Approach

FSR = Final-State Radiation = timelike shower $Q_i^2 \sim m^2 > 0$ decreasing ISR = Initial-State Radiation = spacelike showers $Q_i^2 \sim -m^2 > 0$ increasing

Why "time" like and "space" like?

Consider four-momentum conservation in a branching $a \rightarrow b c$

$$\mathbf{p}_{\perp a} = 0 \implies \mathbf{p}_{\perp c} = -\mathbf{p}_{\perp b}$$

$$p_{+} = E + p_{\mathrm{L}} \implies p_{+a} = p_{+b} + p_{+c} \quad a$$

$$p_{-} = E - p_{\mathrm{L}} \implies p_{-a} = p_{-b} + p_{-c}$$
Define $p_{+b} = z p_{+a}, \quad p_{+c} = (1 - z) p_{+a}$
Use $p_{+}p_{-} = E^{2} - p_{\mathrm{L}}^{2} = m^{2} + p_{\perp}^{2}$

$$\frac{m_a^2 + p_{\perp a}^2}{p_{+a}} = \frac{m_b^2 + p_{\perp b}^2}{z \, p_{+a}} + \frac{m_c^2 + p_{\perp c}^2}{(1 - z) \, p_{+a}}$$

$$\Rightarrow m_a^2 = \frac{m_b^2 + p_{\perp}^2}{z} + \frac{m_c^2 + p_{\perp}^2}{1 - z} = \frac{m_b^2}{z} + \frac{m_c^2}{1 - z} + \frac{p_{\perp}^2}{z(1 - z)}$$

Final-state shower: $m_b = m_c = 0 \Rightarrow m_a^2 = \frac{p_\perp^2}{z(1-z)} > 0 \Rightarrow$ timelike Initial-state shower: $m_a = m_c = 0 \Rightarrow m_b^2 = -\frac{p_\perp^2}{1-z} < 0 \Rightarrow$ spacelike Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected However, more complicated than that

• PDF evolution \approx showers \Rightarrow enters in convoluted cross section, e.g. for 2 \rightarrow 2 processes

$$\sigma = \iiint \mathrm{d}x_1 \,\mathrm{d}x_2 \,\mathrm{d}\hat{t} \,f_i(x_1, Q^2) \,f_j(x_2, Q^2) \,\frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}\hat{t}}$$

• Shower affects event shape

E.g. start from 2-jet event with $p_{\perp 1} = p_{\perp 2} = 100$ GeV. ISR gives third jet, plus recoil to existing two, so

$$p_{\perp 1}=$$
 110 GeV, $p_{\perp 2}=$ 90 GeV, $p_{\perp 1}=$ 20 GeV:

- \bullet inclusive $p_{\perp jet}$ spectrum goes up
- hardest $p_{\perp jet}$ spectrum goes up
- two-jets with both jets above some $p_{\perp \min}$ comes down
- three-jet rate goes up

A 2 \rightarrow *n* graph can be "simplified" to 2 \rightarrow 2 in different ways:

Do not doublecount: $2 \rightarrow 2 = most virtual = shortest distance$

(detailed handling of borders \Rightarrow match & merge)

Final-state radiation

Final-state radiation

Convenient (but arbitrary) subdivision to "split" radiation:

$$\frac{1}{(1-x_1)(1-x_2)}\frac{(1-x_1)+(1-x_2)}{x_3} = \frac{1}{(1-x_2)x_3} + \frac{1}{(1-x_1)x_3}$$

From matrix elements to parton showers

Rewrite for $x_2 \rightarrow 1$, i.e. q-g collinear limit:

$$1 - x_2 = \frac{m_{13}^2}{E_{\rm cm}^2} = \frac{Q^2}{E_{\rm cm}^2} \Rightarrow dx_2 = \frac{dQ^2}{E_{\rm cm}^2}$$

The DGLAP equations

Generalizes to

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$\begin{aligned} \mathrm{d}\mathcal{P}_{a \to bc} &= \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a \to bc}(z) \,\mathrm{d}z \\ P_{\mathrm{q} \to \mathrm{qg}} &= \frac{4}{3} \frac{1+z^2}{1-z} \\ P_{\mathrm{g} \to \mathrm{qg}} &= 3 \frac{(1-z(1-z))^2}{z(1-z)} \\ P_{\mathrm{g} \to \mathrm{q\overline{q}}} &= \frac{n_f}{2} \left(z^2 + (1-z)^2\right) \quad (n_f = \mathrm{no. of quark flavours}) \end{aligned}$$

The DGLAP equations

Generalizes to

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$d\mathcal{P}_{a \to bc} = \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} P_{a \to bc}(z) dz$$

$$P_{q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$$

$$P_{g \to gg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$$

$$P_{g \to q\overline{q}} = \frac{n_f}{2} (z^2 + (1-z)^2) \quad (n_f = \text{no. of quark flavours})$$

Universality: any matrix element reduces to DGLAP in collinear limit.

e.g.
$$\frac{\mathrm{d}\sigma(\mathrm{H}^{0}\to\mathrm{q}\overline{\mathrm{q}}\mathrm{g})}{\mathrm{d}\sigma(\mathrm{H}^{0}\to\mathrm{q}\overline{\mathrm{q}})} = \frac{\mathrm{d}\sigma(\mathrm{Z}^{0}\to\mathrm{q}\overline{\mathrm{q}}\mathrm{g})}{\mathrm{d}\sigma(\mathrm{Z}^{0}\to\mathrm{q}\overline{\mathrm{q}})} \quad \mathrm{in \ collinear \ limit}$$

The iterative structure

Generalizes to many consecutive emissions if strongly ordered, $Q_1^2 \gg Q_2^2 \gg Q_3^2 \dots$ (\approx time-ordered). To cover "all" of phase space use DGLAP in whole region $Q_1^2 > Q_2^2 > Q_3^2 \dots$

Need soft/collinear cuts to stay away from nonperturbative physics. Details model-dependent, but around 1 GeV scale.

The Sudakov form factor – 1

Time evolution, conservation of total probability: $\mathcal{P}(\text{no emission}) = 1 - \mathcal{P}(\text{emission}).$

Multiplicativeness, with $T_i = (i/n)T$, $0 \le i \le n$:

$$\begin{aligned} \mathcal{P}_{\rm no}(0 \leq t < T) &= \lim_{n \to \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\rm no}(T_i \leq t < T_{i+1}) \\ &= \lim_{n \to \infty} \prod_{i=0}^{n-1} (1 - \mathcal{P}_{\rm em}(T_i \leq t < T_{i+1})) \\ &= \exp\left(-\lim_{n \to \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\rm em}(T_i \leq t < T_{i+1})\right) \\ &= \exp\left(-\int_0^T \frac{\mathrm{d}\mathcal{P}_{\rm em}(t)}{\mathrm{d}t} \mathrm{d}t\right) \\ &\Longrightarrow \ \mathrm{d}\mathcal{P}_{\rm first}(T) &= \mathrm{d}\mathcal{P}_{\rm em}(T) \exp\left(-\int_0^T \frac{\mathrm{d}\mathcal{P}_{\rm em}(t)}{\mathrm{d}t} \mathrm{d}t\right) \end{aligned}$$

cf. radioactive decay in lecture 1.

The Sudakov form factor – 2

Expanded, with $Q \sim 1/t$ (Heisenberg)

$$d\mathcal{P}_{a \to bc} = \frac{\alpha_{s}}{2\pi} \frac{dQ^{2}}{Q^{2}} P_{a \to bc}(z) dz$$
$$\times \exp\left(-\sum_{b,c} \int_{Q^{2}}^{Q_{\max}^{2}} \frac{dQ'^{2}}{Q'^{2}} \int \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z') dz'\right)$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that $\sum_{b,c} \int \int d\mathcal{P}_{a\to bc} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens before you reach $Q_0 \approx 1$ GeV).

The Sudakov form factor – 3

Sudakov regulates singularity for first emission

... but in limit of repeated soft emissions $q \rightarrow qg$ (but no $g \rightarrow gg$) one obtains the same inclusive Q emission spectrum as for ME,

i.e. divergent ME spectrum \iff infinite number of PS emissions

More complicated in reality:

- energy-momentum conservation effects big since α_s big, so hard emissions frequent
- $\bullet \ g \to gg$ branchings leads to accelerated multiplication of partons

The ordering variable

In the evolution with

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z$$

 Q^2 orders the emissions (memory). If $Q^2 = m^2$ is one possible evolution variable then $Q'^2 = f(z)Q^2$ is also allowed, since

$$\left|\frac{\mathrm{d}(Q'^2,z)}{\mathrm{d}(Q^2,z)}\right| = \left|\begin{array}{cc} \frac{\partial Q'^2}{\partial Q^2} & \frac{\partial Q'^2}{\partial z} \\ \frac{\partial z}{\partial Q^2} & \frac{\partial z}{\partial z} \\ \frac{\partial z}{\partial Q^2} & \frac{\partial z}{\partial z} \end{array}\right| = \left|\begin{array}{cc} f(z) & f'(z)Q^2 \\ 0 & 1 \end{array}\right| = f(z)$$

 $\Rightarrow \mathrm{d}\mathcal{P}_{a \to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{f(z)\mathrm{d}Q^2}{f(z)Q^2} P_{a \to bc}(z) \,\mathrm{d}z = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q'^2}{Q'^2} P_{a \to bc}(z) \,\mathrm{d}z$

• $Q'^2 = E_a^2 \theta_{a \to bc}^2 \approx m^2/(z(1-z))$; angular-ordered shower • $Q'^2 = p_{\perp}^2 \approx m^2 z(1-z)$; transverse-momentum-ordered

Coherence

QED: Chudakov effect (mid-fifties)

 \sim cosmic ray γ atom

e⁺

e⁻

Coherence

Torbjörn Sjöstrand

Ordering variables in the LEP/Tevatron era

PYTHIA: $Q^2 = m^2$ HERWIG: $Q^2 \sim E^2 \theta^2$

'IG: $Q^2 \sim E^2 \theta^2$ ARIADNE: $Q^2 = p_{\perp}^2$

large mass first ⇒ "hardness" ordered **coherence brute force** covers phase space ME merging simple g → q\overline{q} simple **not Lorentz invariant** no stop/restart

ISR: $m^2 \rightarrow -m^2$

large angle first \Rightarrow hardness not ordered coherence inherent gaps in coverage ME merging messy $g \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart ISR: $\theta \rightarrow \theta$

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent

covers phase space ME merging simple $g \rightarrow q\bar{q}$ messy Lorentz invariant can stop/restart ISR: more messy

Quark vs. gluon jets

$$rac{P_{
m g
ightarrow
m gg}}{P_{
m q
ightarrow
m qg}} pprox rac{N_c}{C_F} = rac{3}{4/3} = rac{9}{4} pprox 2$$

 \Rightarrow gluon jets are softer and broader than quark ones (also helped by hadronization models, lecture 4).

Note transition g jets \rightarrow q jets for increasing p_{\perp} .

Heavy flavours: the dead cone

Matrix element for $e^+e^- \rightarrow q \overline{q} g$ for small θ_{13}

$$\frac{\mathrm{d}\sigma_{\mathrm{q}\overline{\mathrm{q}}\mathrm{g}}}{\sigma_{\mathrm{q}\overline{\mathrm{q}}}} \propto \frac{x_1^2 + x_2^2}{\left(1 - x_1\right)\left(1 - x_2\right)} \approx \frac{\mathrm{d}\omega}{\omega} \; \frac{\mathrm{d}\theta_{13}^2}{\theta_{13}^2}$$

For charm and bottom lagely filled in by their decay products.

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

 $f_i(x, Q^2) =$ number density of partons *i* at momentum fraction *x* and probing scale Q^2 . Linguistics (example):

$$F_2(x, Q^2) = \sum_i e_i^2 x f_i(x, Q^2)$$

structure function

parton distributions

PDF evolution

Initial conditions at small Q_0^2 unknown: nonperturbative. Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_{a} \int_x^1 \frac{\mathrm{d}z}{z} f_a(y,Q^2) \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc} \left(z = \frac{x}{y}\right)$$

PDF evolution

Initial conditions at small Q_0^2 unknown: nonperturbative. Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_{a} \int_x^1 \frac{\mathrm{d}z}{z} f_a(y,Q^2) \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc} \left(z = \frac{x}{y}\right)$$

DGLAP already introduced for (final-state) showers:

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z$$

Same equation, but different context:

- $\mathrm{d}\mathcal{P}_{a \to bc}$ is probability for the individual parton to branch; while
- $df_b(x, Q^2)$ describes how the ensemble of partons evolve by the branchings of individual partons as above.

Initial-State Shower Basics

- \bullet Parton cascades in \boldsymbol{p} are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1/Q$ before collision.
- A hard scattering at Q^2 probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

Initial-State Shower Basics

- \bullet Parton cascades in \boldsymbol{p} are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1/Q$ before collision.
- A hard scattering at Q^2 probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:

Event generation could be addressed by **forwards evolution**: pick a complete partonic set at low Q_0 and evolve, consider collisions at different Q^2 and pick by σ of those. **Inefficient:**

- have to evolve and check for all potential collisions, but 99.9...% inert
- impossible (or at least very complicated) to steer the production, e.g. of a narrow resonance (Higgs)

Backwards evolution is viable and \sim equivalent alternative: start at hard interaction and trace what happened "before"

Backwards evolution master formula

Monte Carlo approach, based on conditional probability: recast

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}t} = \sum_{a} \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc}(z)$$

with $t = \ln(Q^2/\Lambda^2)$ and z = x/x' to

$$\mathrm{d}\mathcal{P}_{b} = \frac{\mathrm{d}f_{b}}{f_{b}} = |\mathrm{d}t| \sum_{a} \int \mathrm{d}z \, \frac{x'f_{a}(x',t)}{xf_{b}(x,t)} \, \frac{\alpha_{\mathrm{s}}}{2\pi} \, P_{a \to bc}(z)$$

then solve for *de*creasing *t*, i.e. backwards in time, starting at high Q^2 and moving towards lower, with Sudakov form factor $\exp(-\int d\mathcal{P}_b)$.

Extra factor $x' f_a / x f_b$ relative to final-state equations.

Coherence in spacelike showers

- i.e. Q_i^2 need not even be ordered
- coherence of leading collinear singularities: $Q_5^2 > Q_3^2 > Q_1^2$, i.e. Q^2 ordered
- coherence of leading soft singularities (more messy):

$$\begin{array}{ll} E_{3}\theta_{4} > E_{1}\theta_{2}, \text{ i.e. } z_{1}\theta_{4} > \theta_{2} \\ z \ll 1; \quad E_{1}\theta_{2} \approx p_{\perp 2}^{2} \approx Q_{3}^{2}, E_{3}\theta_{4} \approx p_{\perp 4}^{2} \approx Q_{5}^{2} \\ \text{ i.e. reduces to } Q^{2} \text{ ordering as above} \end{array}$$

 $z \approx 1$: $\theta_4 > \theta_2$, i.e. angular ordering of soft gluons \implies reduced phase space

Evolution procedures

DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution towards larger Q^2 and (implicitly) towards smaller x BFKL: Balitsky–Fadin–Kuraev–Lipatov evolution towards smaller x (with small, unordered Q^2) CCFM: Ciafaloni–Catani–Fiorani–Marchesini interpolation of DGLAP and BFKL GLR: Gribov–Levin–Ryskin nonlinear equation in dense-packing (saturation) region, where partons recombine, not only branch

Torbjörn Sjöstrand

Did we reach BFKL regime?

Study events with ≥ 2 jets as a function of their y separation; $\cos(\pi - \Delta \phi) = 1$ is back-to-back jets, i.e. little extra radiation.

Analytic BFKL calculations describe data for $\Delta y > 4$, but HEJ BFKL-inspired generator overshoots effect, and standard DGLAP Herwig++ almost spot on. No strong indications for BFKL/CCFM behaviour onset so far!

Initial- vs. final-state showers

Both controlled by same evolution equations

$$\mathrm{d}\mathcal{P}_{\boldsymbol{a}\to\boldsymbol{b}\boldsymbol{c}} = \frac{\alpha_{\mathrm{s}}}{2\pi} \, \frac{\mathrm{d}Q^2}{Q^2} \, \boldsymbol{P}_{\boldsymbol{a}\to\boldsymbol{b}\boldsymbol{c}}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} \, \cdot \, (\mathrm{Sudakov})$$

Initial- vs. final-state showers

Both controlled by same evolution equations

$$\mathrm{d}\mathcal{P}_{\boldsymbol{a}\to\boldsymbol{b}\boldsymbol{c}} = \frac{\alpha_{\mathrm{s}}}{2\pi} \, \frac{\mathrm{d}Q^2}{Q^2} \, \boldsymbol{P}_{\boldsymbol{a}\to\boldsymbol{b}\boldsymbol{c}}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} \, \cdot \, (\mathrm{Sudakov})$$

but

decreasing E, m^2, θ both daughters $m^2 \ge 0$ physics relatively simple \Rightarrow "minor" variations: Q^2 , shower vs. dipole, ... Initial-state showers: Q^2 spacelike ($\approx -m^2$) E_0, Q_0^2 E_1, Q_1^2

decreasing *E*, increasing Q^2 , θ one daughter $m^2 \ge 0$, one $m^2 < 0$ physics more complicated \Rightarrow more formalisms: DGLAP, BFKL, CCFM, GLR, ...

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (\sim colour dipoles)

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (\sim colour dipoles)

ISR+FSR add coherently in regions of colour flow and destructively else

"u" (g) in "normal" shower by
 SR azimuthal anisotropies

automatic in dipole (by proper boosts) Current-day generators for pseudorapidity of third jet:

The dipole picture -1

 $1 \rightarrow 2$ branching = replace m = 0 parton by pair with m > 0. Breaks energy-momentum conservation. Herwig angular-ordered shower: post-facto rescaling machinery.

Alternative: dipole picture (first Ariadne, now everybody else). 2 \rightarrow 3 parton branching, or 1 \rightarrow 2 colour dipole branching. Can be viewed as radiator $a \rightarrow bc$ with recoiler *r*.

The dipole picture – 2

Ariadne main splitting expressions for final-state radiation:

$$dP_{q\bar{q}\to q\bar{q}g} = \frac{\alpha_s}{2\pi} \frac{4}{3} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} dx_1 dx_2$$

$$dP_{qg\to qgg} = \frac{\alpha_s}{2\pi} \frac{3}{2} \frac{x_1^2 + x_2^3}{(1 - x_1)(1 - x_2)} dx_1 dx_2$$

$$dP_{gg\to ggg} = \frac{\alpha_s}{2\pi} \frac{3}{2} \frac{x_1^3 + x_2^3}{(1 - x_1)(1 - x_2)} dx_1 dx_2$$

does not define angular orientation.

The Catani–Seymour dipole is primarily a kinematics recipe how to map 2 partons $ar \leftrightarrow 3$ partons bcr' for both initial and final state:

$$p_{a} = p_{b} + p_{c} - \frac{y}{1 - y} p_{r'} \qquad y = \frac{p_{b} p_{c}}{p_{b} p_{c} + p_{b} p_{r'} + p_{c} p_{r'}}$$

$$p_{r} = \frac{1}{1 - y} p_{r'}$$

Some shower programs

- Herwig angular-ordered shower (QTilde) p_{\perp} -ordered CS dipoles (Dipoles)
- PYTHIA p_{\perp} -ordered dipoles (TimeShower, SpaceShower)VINCIA antennae (plugin)DIRE dipoles (plugin)
- Sherpa p_{\perp} -ordered CS dipoles (CSSHOWER++)DIRE dipoles
- Ariadne first dipole parton shower program
- DIPSY evolution and collision of dipoles in transverse space
- Deductor improved handling of colour, partitioned dipoles, all final partons share recoil, q^2/E evolution variable
- HEJ (High Energy Jets) BFKL-inspired description of well-separated multijets, with approximate matrix elements and virtual corrections

VINCIA: an Interleaved Antennae shower

Markovian process: no memory of path to reach current state.

Based on antenna factorization of amplitudes and phase space.

Smooth ordering fills whole phase space.

Step-by-step reweighting to new matrix elements: $Z \rightarrow Zj \rightarrow Zjj \rightarrow Zjjj$ (also Sudakov), e.g.

$$W = \frac{|\mathcal{M}_{\mathrm{Zj}}|^2}{\sum_i a_i |\mathcal{M}_{\mathrm{Z}}|_i^2}$$

Replaces PYTHIA normal showers; recent release. CMS, $\Delta \phi(Z, J_1)$, $\sqrt{s} = 7$ TeV

DIRE: a Dipole Resummation shower

Joint Sherpa/PYTHIA development, but separate implementations, means technically well tested.

"Midpoint between dipole and parton shower", dipole with emitter & spectator, but not quite CS ones: unified initial-initial, initial-final, final-initial, final-final.

Soft term of kernels in all dipole types is less singular

$$\frac{1}{1-z} \rightarrow \frac{1-z}{(1-z)^2 + p_\perp^2/M^2}$$

