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Event Generators Reminder

An event consists of many different physics steps,
which have to be modelled by event generators:

PDF
ME
MPI
ISR
FSR
BR

Q0000000000000 000000000000

Hadr.

Decays

Unknown?

Q0000000000000 000000000000

Torbjérn Sjostrand Event Generators 3 slide 2/35



Event topologies

Expect and observe high multiplicities at the LHC.
What are production mechanisms behind this?
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What is minimum bias (MB)?

MB =~ “all events, with no bias from restricted trigger conditions”
Otot =
Oclastic T Osingle—diffractive T Odouble—diffractive T * * * + Onon—diffractive

Schematically:

dn/dy

Reality: can only observe events with particles in central detector:
no universally accepted, detector-independent definition

Omin—bias =~ Onon—diffractive T Tdouble—diffractive ~2 2/3 X Otot
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What is underlying event (UE)?

dn/dy

jet

------- pedestal height
/ underlying |event \
Yy

In an event containing a jet pair or another hard process, how
much further activity is there, that does not have its origin in the
hard process itself, but in other physics processes?

Pedestal effect: the UE contains more activity than a normal MB
event does (even discarding diffractive events).

Trigger bias: a jet "trigger” criterion E| jet > E| iy is more easily
fulfilled in events with upwards-fluctuating UE activity, since the
UE E| in the jet cone counts towards the E| jo;. Not enough!

Torbjérn Sjostrand Event Generators 3 slide 5/35



slide 6/35

\

PN

i

N7 s
é@%\w 8 3
R\l I

where L is machine luminosity per bunch crossing, £ ~ nyny/A

and o ~ oot = 100 mb.
However, keep in mind concept of bunches of hadrons

considered here, but can be a nuisance.
leading to multiple collisions.

Current LHC machine conditions =
Pileup introduces no new physics
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The divergence of the QCD cross section

Cross section for 2 — 2 interactions is dominated by t-channel
gluon exchange, so diverges like d6/dp? ~1/p} for py — 0.

Integrated cross section above pTmin for pp at 14 TeV

10000 ——
]et cross section
total cross section -------
1000
Integrate QCD 2 — 2 100
aq’ — qq’ 2
qqﬁq’q’ o
qq — gg 1
qg — qg
0.1
gg — g8
gg — qq S
(with CTEQ 5L PDF’s) "0 5 10 15 20 25 30 3 40 45 50

pTmin (GeV)
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What is multiple partonic interactions (MPI)?

Note that oint(pLmin), the number of (2 — 2 QCD) interactions
above p | min, involves integral over PDFs,

dé
Gnpimin) = [[[ b dadst Ala.t) hle.st) 15
P_Lmin pL

with [ dx f(x,p?) = oo, i.e. infinitely many partons.

So half a solution to oint(PLmin) > Otot 1S

many interactions per event: MPI

Otot — E On
Oint = E nonp

Tint > Ogot < (n) >1 -~
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Poissonian statistics

Pn
If interactions occur independently

(n) =2 then Poissonian statistics
’Pn — ﬂ e_<n>

n!

but n = 0 = no event (in many models)
and energy—momentum conservation
= large n suppressed

™ so narrower than Poissonian

01234567

MPI is a logical consequence of the composite nature of protons,
Nparton ™~ Zq,ﬁ,g ] f(X) dx > 3, which allows Uint(mein) > Otot,

but what about the limit p} i, — 07
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Colour screening

Other half of solution is that perturbative QCD is not valid at
small p, since q,g are not asymptotic states (confinement!).

Naively breakdown at

h N 0.2 GeV - fm

Plmin & g ~ 0.7 fm

~ 0.3 GeV ~ /\QCD

... but better replace r, by (unknown) colour screening length d in

hadron:
[\ ‘ \

A~1/p)
resolved screened
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Regularization of low-p, divergence

so need

do

dp?

d&/dp3

nonperturbative regularization for p; — 0 | e.g.

2( 2 2( .2
oZ(p oZ(p :

x S(4_L) - S(4l)9 (PL — Pimin)  (simpler)
pP1 Pl

ax(plo+p1)

(Plo +p3)?

or (more physical)

where p | min OF plo are free
parameters, empirically of order
2-3 GeV.

Typical number of interactions/event
is3at2 TeV, 4 -5 at 13 TeV,

but may be twice that in
“interesting” high-p, ones.

0
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Impact parameter dependence

So far assumed that all collisions have equivalent initial conditions,
but hadrons are extended, so dependence on impact parameter b.

Overlap of protons during encounter is

—,p

b O(b) = [ dxat pa(x.0) palx. 1)

where p is (boosted) matter distribution in p,
e.g. Gaussian or electromagnetic form factor.

Average activity at b proportional to O(b):
* central collisions more active

= P, broader than Poissonian;
* peripheral passages normally give

no collisions = finite oot .
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Double parton scattering

Double parton scattering (DPS): two hard processes in same event.

JA9B  for A= B

OAOB

{ Gort for A% B

0pPS =
204

(Poissonian = 1/2; AB + BA = 2)

Note inverse relationship on ..
Studied by Natural scale is onp ~ 50 mb,
but “reduced” by b dependence.

@ 4 jets

@ v+ 3 jets
@ 4 jets, whereof two b- or c-tagged
@ J/¢ or T 4 2 jets (including vcc)
o W/Z + 2 jets

o W-W~—
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Double parton scattering backgrounds

Always non-DPS backgrounds, so kinematics cuts required.

Example: order 4 jets p11 > pi2 > pi3 > pr4 and define ¢
as angle between p;; Fp12 and p 3 F p14 for AFS/CDF
Double Parton Scattering

Double BremsStrahlung
2

=
4 2 1

lpi1+pi2/~0
P13+ pial=0
do/d flat

lIp11+Ppi2|>0
P13 +pial >0
do/dy peaked at ¢ =~ 0/7 for AFS/CDF
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Experimental summary on DPS rate

Note:
E 30_I 1T \Il T T T L T T L ] .
= [ ATLAS preliminary ] big error bars,
I_=;=, o5l 1 uncertain
© - 1 methodology,
C 1 but consistent:
2or 1 14
- | i | ot ®onp/3
151 I + = factor ~ 3
C | ) % 1 enhancement
101 | - relative to naive
C * 1 expectations
s - -
o_l 111 \Il 1 1 111 \Il 1 1 111 I|| ]
10? 10° 10*
s [GeV]
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Multiplicity and MPI effects

DPS only probes high-p; tail of effects.
More dramatic are effects on multiplicity distributions:

5§ lgrrrrrrr g
5 [ ng22p > 100MeV, 7l <25 E
., T>300ps 7
z 10 E ATLAS (5= 13 Tev E
=2 F T T 7 & E
=z f + ALICE 1 5 i
2107 ---- D6T (109) H Z 107 E
Zz ATLAS-CSC (306) | 1 E 3
I ---- Perugia-0 (320) |- S .
S10%E —— PHOJET 0 E
e r [ == Data ]
10°E 1074t — PYTHIA 8 A2 -
F E = PYTHIA 8 Monash 3
B [ == EPOS LHC ]
104 105 =~ QGSJET 104 ]
| Vs=7Tev E -
105k INEL>O F s
E Il <1 .
n T 1
Q ~
S1s- ER
o] - B ~ O SammneT My e
T 4 ok a4 0 3
%1'05 19 i
Sosf- e i
oc t ]
- =
0 20 40 60 250
Multiplicity N , ‘ N,
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Forward-backward correlations

Global number, such as #MPI, affects activity everywhere:

c 0.9F A —]

o IO —&— Data 2010 —@—— Pythia 6 MC09 B

ig C ATLAS - -4-- Pythia6 DW ]

© 08~ e Wesin Pythia 6 Perugia2011 ]

= C ---<r--- Pythia6 AMBT2B

9 - -:=¢-=- Pythia 84C 3

> 0.7 :uww.iwww Herwig++ =

:‘5 L p, > 100 MeV ]

= 0.6

[ e

= C

2 0.5

E C

m .

L 04

o 115

hL E

s 1

~ c 3

o 09 e — E

= .8t L \ \ \ =
0 0.5 1 1.5 2 25

(note suppressed zero on vertical axis = big effects!)
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Colour (re)connections and (p, )(ne)

(p 1 )(ncp) is very sensitive to colour flow

— 22— T

> E Ny, > 1, p. >500 MeV, n < 0.8 E

o F ©>300ps ]

~ 180 ATLAS Vs=13TeV =

= e E

1.4F o

1.2F =

long strings to remnants = much Lo E
nepl/interaction = (p | ) (nep) ~ flat 08 == D A8 A2 E
06 . pyTHIA 8 Monash E

0.4 - EPOS LHC -

£ - QGSJET Il-04 1

0.2:* 3

-

[V}
Yy
1

MC / Data

short strings (more central) = less
nepfinteraction = (p | ) (ncp) rising n
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Jet pedestal effect — 1

Events with hard scale (jet, W/Z) have more underlying activity!
Events with n interactions have n chances that one of them is hard,
so “trigger bias”: hard scale = central collision

=- more interactions = larger underlying activity.

Studied in particular by Rick Field, with CDF/CMS data:
“MAX/MIN Transverse” Densities

Jet #1 Direction

“TransMIN” very sensitive to
the “beam-beam remnants™!

Jet #1 Direction

X

Jet#3

“Away-Side” Jet

o Define the MAX and MIN “transverse” regions on an event-by-event basis with
MAX (MIN) having the largest (smallest) density.
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Jet pedestal effect — 2

281 nb™ (13 TeV)
CMS

Preliminary

Data  Monash CUETP8M1 CUETP8S1 CUETHS1

13 Tev e e

7TeV = ————— i mimimim mmm e m

2.76 TeV e e
09TeV —o—

04 g t transAVE

0 L 1 1 1 I 1 1 L 1 I 1 1 1 1 I 1 L 1 L I 1 1 1 1 l 1
10 20 30 40
Leading Jet P, (GeV)
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MPIl in PYTHIA

@ MPIs are gererated in a falling sequence of p; values;
recall Sudakov factor approach to parton showers.

@ Energy, momentum and flavour conserved step by step:
subtracted from proton by all “previous” collisions.

@ Protons modelled as extended objects, allowing both central
and peripheral collisions, with more or less activity.

o (Partons at small x more broadly spread than at large x.)

@ Colour screening increases with energy, i.e. p1o = plo(Ecm),
as more and more partons can interact.

o (Rescattering: one parton can scatter several times.)

@ Colour connections: each interaction hooks up with colours
from beam remnants, but also correlations inside remnants.

@ Colour reconnections: many interaction “on top of” each
other = tightly packed partons = colour memory loss?
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Interleaved evolution in PYTHIA

e Transverse-momentum-ordered parton showers for ISR and FSR
e MPI also ordered in p|

= Allows interleaved evolution for ISR, FSR and MPI:

dapP <dPMPI ZdPISR Zde‘SH>

dpL dpi dp; dp|
Prmax [ dPyipr dPISR dpFSR) / )
X exp|— / ( dp
( PL dp', Z Z dp'y +

Ordered in decreasing p; using “Sudakov” trick.
Corresponds to increasing “resolution”:
smaller p, fill in details of basic picture set at larger p .

@ Start from fixed hard interaction = underlying event
@ No separate hard interaction = minbias events

@ Possible to choose two hard interactions, e.g. W~—W™
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MPI in Herwig

Key point: two-component model

s B ——————————
% [ — P =3GeV, f=—05GeV * ]
Q e | W Pl =5 GeV, 3=0.06 GeV ™2 1
i
~ 4 -
=
= 0 ]
S
S E
[l do g —B (p? —pmin? ]
?'5 Tpre (I t ) ]
e
T2
= "t
i L

1-

ok

0

P (GeV)

P1 > Plmin: pure perturbation theory (no modification)
P1 < Plmin: pure nonperturbative ansatz
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MPI in Herwig — 2

Number of MPIs first picked; then generated unordered in p; .

°

@ Interactions uncorrelated, up until energy used up.

@ Force ISR to reconstruct back to gluon after first interaction.

@ Impact parameter by em form factor shape, but tunable width.

@ Plmin scale o Charged particle multiplicity as function of y (0.9TeV, Ny, > 6)
to be tuned % —e— Read off from ATLAS

z ? —— Herwig++ 2.4

energy-by-energy. d8E — Herwige+ 25

@ Colour reconnection
essential to get
dn/dn correct.

z F-r— P
-~
g 1.2 S e
= P S —— i ~———]
08
0.6
-2 1 o 1 2
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Heavy lon Collisions

hadronic phase
and freeze-out

QGP and
initial state hydrodynamic expansion

pre-equilibrium

* The only way we can create the QGP in the laboratory!

By colliding heavy ions it is possible to create a large (»1fm3)
zone of hot and dense QCD matter

* Goal is to create and study the properties of the Quark Gluon
Plasma

+ Experimentally mainly the final state particles are observed,
so the conclusions have to be inferred via models
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The three systems — understanding before 2012

Pb-Pb
Hot QCD matter:
This is where we expect
the QGP to be created
in central collisions.
pp QCD baseline:

This is the baseline for
“standard” QCD
phenomena.

Cold QCD matter:

This is to isolate nuclear
effects, e.g. nuclear
pdfs.
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Strangeness enhancement

Ratio of yields to (t+m*)
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Collective flow

ATLAS .0 5<p}°<5.0 GeV
1s=13 TeV - g \\\OsN 30
N
N h rec<3 0 N

CMS Preliminary

ATLAS

s=13 TeV e

50<N, <60

T
[ O pPb sy, =5TeV 7
010 O PbPb {5y =2.76 TeV LpooB O
Folanl>2 L O o A
N L = i
& | a o © © 0000p 5
5>N005 DDO o ©
L o |
L S%OQ WA}§$ ®pp Vs=13TeV il
r gs Fpp Vs=7TeV b
L 03<p <3GeVic Oppls=5Tev |
| | |
0 100 200 300

offline
Nlrk

05<pi°<5.0GeV

N
\._50=N5°<60
N

ATLAS
(s=13 TeV 7

N, e>120

AN

Increasingly blurred line
between pp, pA and AA!

QGP theory wrong?
Much smaller systems
enough for QGP?

Standard pp generators
wrong! Need mechanism
for collectivity.
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Total cross section

'E 7\\\\\‘ \\\\\H‘ \\\\\H‘ \\\\\H‘ T
E 140 o aTLAS
) C = TOTEM
120~ s+ Lower energy pp
B s Lower energy and cosmic ray pp
B o Cosmic rays
100 __ COMPETE RRpl2u
O e 13.1 - 1.88In(s) + 1.42In%(s)
80
60—

A S I

40k
&| T
20— . . |
: \A‘m-el"AH-..‘ ____________ A-- | | :
obu oAbl - o E
10 102 103 104
Vs [GeV]
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Event-type breakdown

L B E F e ATLAS (N;BY’S)‘ ovthias
J = 100F- 5 ATLAS (ALFA) --- EPOS LHC
elastic scattering P . g £ v TOTEM “== QGSJET-I
N, © 90F . Auce
1o - ° s [ | 80;* ; k:‘g::r
E e pp(noniHC)
single diffraction ’ P ' ] .. :'. . 60?
Y N . 3
0 " 0 . ] 40
i 30E*
~ £ ¢ o 3 e : E ATLAS y ! STt T
_ P of, %" e 102 10° 10*
double diffraction . \‘:\ ‘A-_.'V'” - “' ' = {5 [GeV]
©t "t " " e Phase space for diffractive
Duble T~k 0. Jeot masses and rapidity gaps
meTon ~ e 0 . . .
Photon) x| s roughly like dM?/M? = dy,
Exchange 2 e e 2 s 3w . . . qe
' o o i.e. flat in rapidity.
. = r C - . .
Mali T e e @ Rapidity integration means
Pomeron b o P ' .
Exchange l‘:‘ S " . . Osd 8rows faster that Otot
TR ST T e

ogq even faster, etc.
= Need damping.
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Amplitude for (forward) elastic scattering from total cross section:

p e} SHE: E p p
o 1 [=
e -
TOTTO™ | 20009
o : g P
SUTTT" | 00005
Ro000 | 20009
=4 : [
p S HEE: E p p
introducing the Pomeron IP as shorthand
for the effective 2-gluon exchange. .
Since p — pIP the Pomeron must have P P
the quantum numbers of the vacuum:
07" colour singlet. P P
Recall: elastic cross section requires b b

squaring one more time:
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Regge—Pomeranchuk theory of cross sections

total elastic single diffractive double diffractive central diffractive
A - A 5 A : A ; A

B B . B

03'540‘? = ﬁA(O) ﬁB(O) Im G]P(S/So, 0)

0 L) B30 G5 50,0
dt 167
dUsAdBHAX 1 2 2 2 2
wdE = Tea RS Ba(t) Be(0)|Gr(s/ M=, t)|” Im G(M* /sy, 0)
408X 1

o M2M3), )|
dth12 dM22 167 M12 M22 831 /BA(O) ﬁB(O) |G]P(SSO/( 1 2)a )|

x  Im G(M?/sp,0)Im G(M3 /sy, 0)
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Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) x (IPp collision)

p
P . Used e.g. in
P POMPYT
POMWIG
p PHOJET

1) osp and opp set by Reggeon theory.
2) fp/p(xwp, t) = diffractive mass spectrum, p, of proton out.
3) Smooth transition from simple model at low masses to Pp with
full pp machinery: multiple interactions, parton showers, etc.
4) Choice between different Pomeron PDFs.
)

5) Free parameter op,, needed to fix (Minteractions) = Tjet/TPp-
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Gaps by subprocess

= LIS LR B BN BN I IR

E10% = ATLAS @ Datal=7.1ub* =

w  E Vs=7TeV PYTHIA 8 4C 3

3 p,>200 MeV ......... Non-Diffractive ]
N T Single Diffractive

10 = ... Double Diffractive 3

1 A T =

MC/Data
=
= (3]

o
[EEN
N
w
IS
ol
(e}
~

“} :

>
=
m

Non-diffractive fine, but wrong gap spectrum for diffraction.
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Multiplicity in diffractive events

%10 | 4<Ar‘]F<6 | | —-—‘ Data | E

L10° Vs =7 Tev —— MCPYTHIA6 =

105 Py > 200 MeV - =.- MCPYTHIAS 7
ATLAS ~ ==+ MC PHOJET

10 3

10°

d
4
4

102

o
m r —
Q ..l'-"--—-‘--_|_-‘— =
O T e A .
= = =
25 30 35 40
NC

PYTHIA 6 lacks MPI, ISR, FSR in diffraction, so undershoots.
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