BEYOND THE SM (BSM)

Kaustubh Agashe (University of Maryland)

* * * *

 $\star \star \star \star$

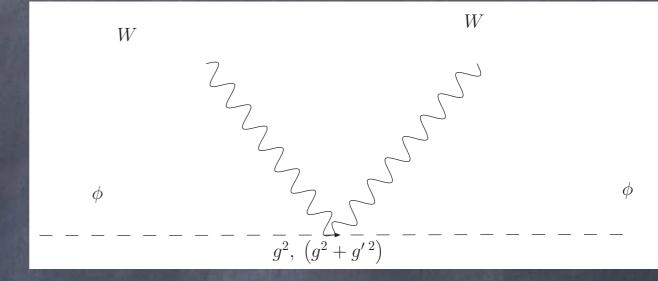
Outline

Review of SM (see also previous lectures)
 Motivation to go beyond
 SUSY
 Extra dimensions

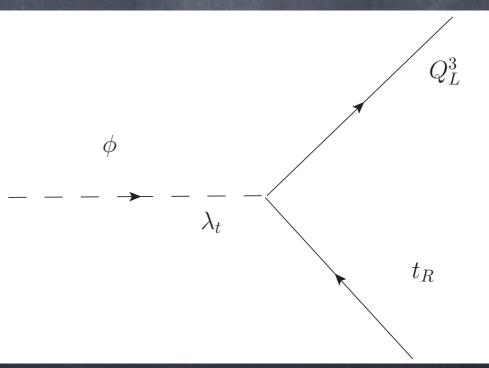
Review of SM

Particle content

 Spin-1/2 matter (LH Weyl fermions: e^c is anti-particle of RH electron)


 Spin-1 gauge bosons (force carriers)

Spin-O Higgs (gives mass to others)


generation						
particle /	$SU(3)_c$	$ SU(2)_w $	$\mid U(1)_Y$			
$\left(\begin{array}{c} u\\ d\end{array}\right)_i$	3	2	$\frac{1}{6}$			
u_i^c	$\overline{3}$	1	$-\frac{2}{3}$			
d_i^c	3	1	$\frac{1}{3}$			
$\left(egin{array}{c} u \\ e \end{array} ight)_i$	1	2	$-\frac{1}{2}$			
e_i^c	1	1	1			
W	1	3	0			
G	8	1	0			
B	1	1	0			
$\left(\begin{array}{c}\phi^+\\\phi^0\end{array}\right)$	1	2	$\frac{1}{2}$			

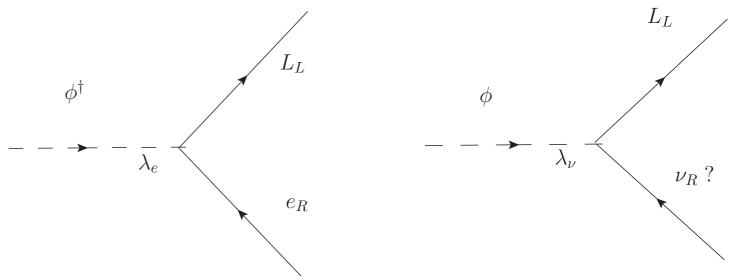
Electroweak symmetry breaking via Higgs VEV (see Williams lectures)

W, Z masses (not for photon):

Quark (e.g., top) and lepton) masses:

(return to these vertices for motivation to go beyond SM)

Disclaimer (I) for BSM


• numerous motivations, ideas...

focus on a couple (instead of overview of many)

Experimental motivations

 Dark Matter (20 %) of universe:
 only observed gravitationally so far; no unique guiding principle for theory (cf. SM) (although WIMP miracle, return during SUSY)

Neutrino mass (see L_L Parke/Paley lectures): absence of ν_R in SM e_R just add it (" ν "SM): "weird": no SM gauge couplings + why mass/Yukawa coupling so much smaller than charged fermions (see back-up on extra dimensions)

Theoretical ("aesthetic") motivations

(no theoretical inconsistency)

Hierarchy problems

Planck-weak hierarchy problem: radiatively unstable

Flavor (hierarchy) puzzle: radiatively stable

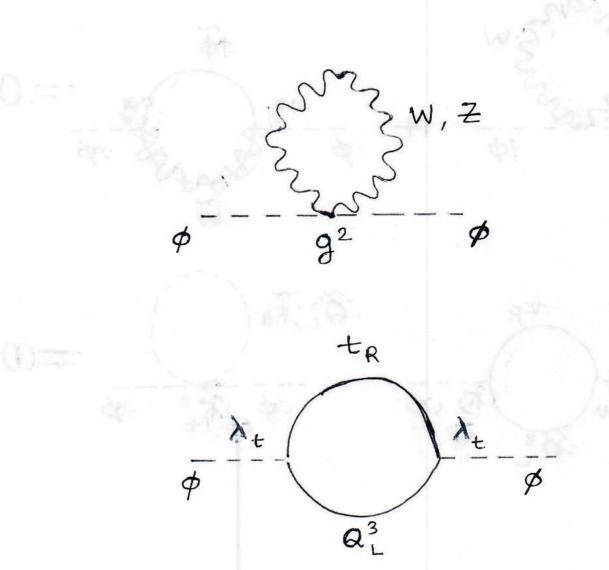
SM: effective theory below M_{Pl}

Gravitational coupling ~ G_N × E₁E₂
…becomes strong at energy M_{Pl} ~ √hc⁵G_N⁻¹ ~ 10¹⁸ GeV
new physics at M_{Pl}, not a QFT (non-renormalizable)
cannot extrapolate rest of SM beyond M_{Pl}
Instead of Λ_{UV} → ∞in SM (QFT), use Λ_{UV} ~ M_{Pl}

"Revisit" renormalization

- (finite) observed = (finite) bare + finite (even if large) loop, with $\Lambda_{UV} \sim M_{Pl}$

 \blacksquare Is there tuning? (meaningless when $\Lambda_{UV} o \infty$)

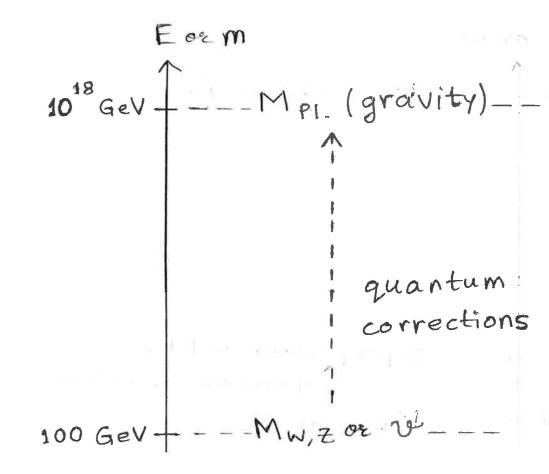

Quantum correction to Higgs mass term/VEV (I)

same vertices which give mass to top and W, Z

 quadratic divergence (dimensional analysis + no symmetry):

$$\delta \mu^2 \sim \frac{(g, \lambda_t)^2}{16\pi^2} \Lambda_{UV}^2$$

(problem so severe that estimate suffices)



Quantum correction to Higgs (scalar) mass term/VEV (II)

Naturally

 $\overline{\mu_{obs.}^2} \left(= \mu_{bare}^2 + \delta \mu^2 \right) \to \Lambda_{UV}^2 \sim M_{Pl}^2$

• huge (~1 part in 10^{30})
tuning between μ_{bare}^2 and $\delta \mu^2$ to obtain observed Higgs
mass term/VEV ~ 100 GeV

Aside...

 Even if we ignore gravity, new particles at very high scales for GUT/neutrino mass: Higgs mass naturally up there

(seesaw mechanism for neutrino mass: see Parke lecture)

(GUTs: strength of 3 forces of SM RG evolve to unify at $\sim 10^{15}\,{
m GeV}$)

cf. Quantum correction to fermion mass Instruction logarithmic divergence due to chiral symmetry $\mathcal{L} \ni M_e \overline{e_L} e_R \Rightarrow$ IF $M_e \to 0$, then (chiral) symmetry: invariance under $e_{L,R} \rightarrow e^{i\alpha_{L,R}} e_{L,R} \Rightarrow$ $\delta M_e \propto M_{e \ bare}$ (both sides break symmetry) \Rightarrow cannot have $\Lambda_{UV}^{>0} \Rightarrow$ $\delta M_e \sim M_{e \ bare} \times \frac{e^2}{16\pi^2} \log \Lambda_{UV} \dots$ ${\it o}$ Even if $\Lambda_{UV} \sim M_{Pl}$, log \sim O(40)

 \square

o no tuning: $M_{e \ obs.} \sim M_{e \ bare} \sim \delta M_e$

(cf. $\delta \mu^2 \neq 0$ for scalar even if $\mu_{bare}^2 = 0$: no symmetry)

...really quantum correction to Yukawa coupling (to Higgs)

• similar symmetry argument: $M_e = \lambda_e v / \sqrt{2}$ with $\delta \lambda_e \sim \lambda_e$ bare $\times \frac{g^2}{16\pi^2} \log \Lambda_{UV}...$

[Even if $\lambda_e = 0$, electron does couples to W, Z which couple to Higgs... electron couples via gauge loop to Higgs?...No (due to symmetry)!]

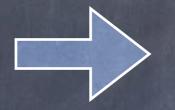
Flavor (hierarchy) puzzle

• If M_e or λ_e starts small, then stays small (radiatively stable)...

...but why starts small (vs. large for top quark)?

(return during extra dimensions)

Supersymmetry (SUSY) (BSMI)


Disclaimer for beyond SM (II)

- skip technical details (see references)
- focus on (for both SUSY and extra dimensions): principle behind idea/solution to hierarchy who are new particles (dictated by principle) interactions of/signals for new particles

SUSY (theory) (Solution to Planck-weak hierarchy problem)

SUSY: basic idea

symmetry relating fermions to bosons

every fermion has bosonic partner and vice versa + interactions invariant under exchange

SUSY solves Planck-weak hierarchy problem (Ia)

(chiral) symmetry protection for fermion
 (discussed earlier) "extends" to scalar

That's the "one liner": more in a bit

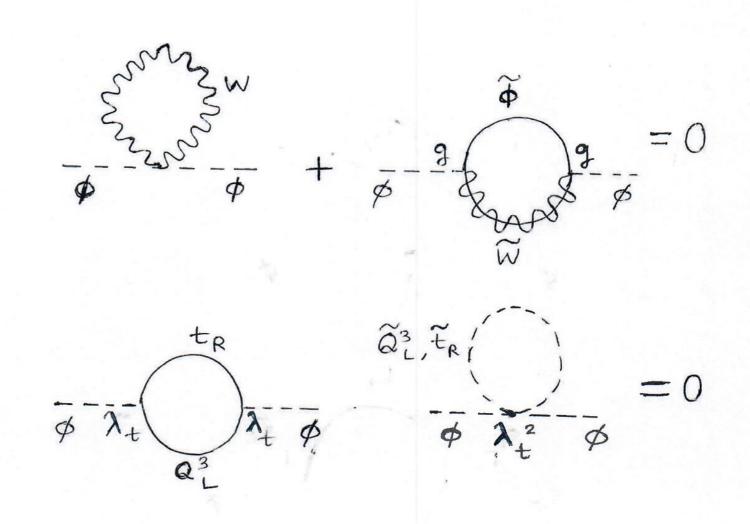
Minimal supersymmetric SM (MSSM)

see Martin's review: hep-ph/9709356

2 Higgs doublets: anomaly cancellation

$\begin{array}{l} \text{SM particle} \\ \text{spin} = S \end{array}$	$sparticle spin = \left S - \frac{1}{2} \right $	$ SU(3)_c $	$SU(2)_w$	$\bigcup U(1)_Y$
$\left(\begin{array}{c} u \\ d \end{array}\right)_i$	$\left(\begin{array}{c} \tilde{u} \\ \tilde{d} \end{array}\right)_i$	3	2	$\frac{1}{6}$
u_i^c	\widetilde{u}_i^c	3	1	$-\frac{2}{3}$
d_i^c	\widetilde{d}_i^c	3	1	$\frac{1}{3}$
$\left(egin{array}{c} u \\ e \end{array} ight)_i$	$\left(egin{array}{c} \widetilde{ u} \\ \widetilde{e} \end{array} ight)_i$	1	2	$-\frac{1}{2}$
e^c_i	$ ilde{e}^c_i$	1	1	1
W	ilde W	1	3	0
G	$ ilde{G}$	8	1	0
В	$ ilde{B}$	1	1	0
$\left(\begin{array}{c}\phi_{u}^{+}\\\phi_{u}^{0}\end{array}\right)$	$\left(egin{array}{c} ilde{\phi}_u^+ \ ilde{\phi}_u^0 \end{array} ight)$	1	2	$\frac{1}{2}$
$ \begin{pmatrix} \phi_{u}^{+} \\ \phi_{u}^{0} \end{pmatrix} \\ \hline \begin{pmatrix} \phi_{d}^{0} \\ \phi_{d}^{-} \end{pmatrix} $	$ \begin{array}{c c} & \tilde{\phi}^{a}_{d} \\ & \tilde{\phi}^{-}_{d} \end{array} $	1	2	$-\frac{1}{2}$

Sparticle/superpartner interactions

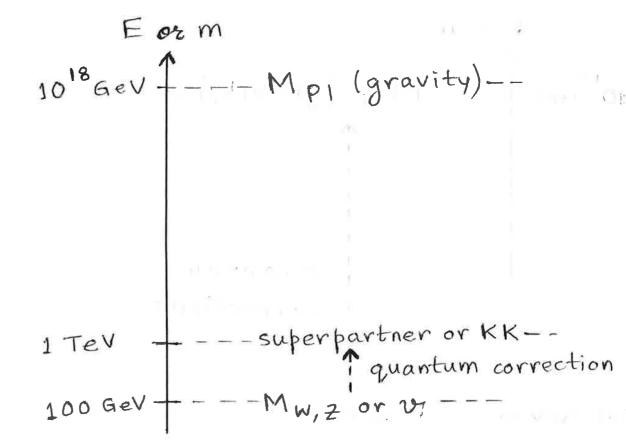

- "Replace" particles (two in order to conserve angular momentum) in SM interactions by sparticles
- Gauge-related interactions: $g_s \bar{q} \tilde{q} \tilde{G} \quad \text{(as above)}$ $g_s \tilde{q}^{\dagger} G^{\mu} \partial_{\mu} \tilde{q} \dots \text{ (a la scalar QED)}$

(Similarly, other gauge groups...) Vukawa-related interactions:

 $\lambda_t \ \overline{Q_L^3} \ \tilde{t_R} \ \tilde{\phi}_u \ \text{(as above)} \\ (\lambda_t)^2 \ \phi_u^{\dagger} \phi_u \ \tilde{Q_L^3} \ \tilde{Q_L^3} \ \tilde{Q_L^3} \dots \text{(see review)}$

SUSY: solves Planck-weak hierarchy problem (Ib)

Cancellation in $\delta \mu^2$ (-1 for fermion loops vs. boson loops)



SUSY: solves Planck-weak hierarchy problem (IIa)

 Real world: SUSY broken (haven't seen selectron degenerate with electron)

 ${\color{black} \bullet}$ cancellation not exact: SUSY breaking $\delta\mu^2\sim \frac{\lambda_t^2}{16\pi^2}M_{\tilde{t}}^2\dots \qquad {\color{black} \mathsf{mass}}$

Instill natural if SUSY breaking mass < \sim TeV

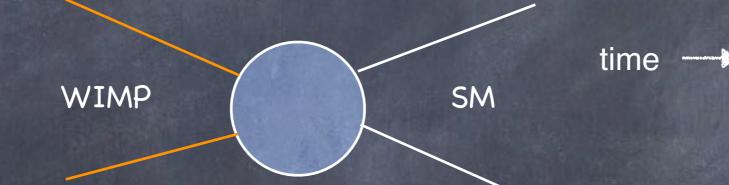
SUSY: solves Planckweak hierarchy problem (IIb)

- SUSY breaking scale $\ll M_{Pl}$?
- Solution: dynamical SUSY breaking
 (by gauge coupling becoming strong at scale naturally $\ll M_{Pl}$ a la QCD)

Summary

- SUSY solves Planck-weak hierarchy problem...
- ...if superpartners have mass <~TeV
- LHC is SUSY "factory"

SUSY phenomenology (DM candidate and LHC signals)


R-parity

- Minimal model: interactions have even number of superpartners
- lightest supersymmetric particle (LSP) stable
 (cannot decay into SM)
- Formally: R-parity, under which
 SM particles even, superpartners odd

R-parity $\rightarrow (LSP) Dark matter$

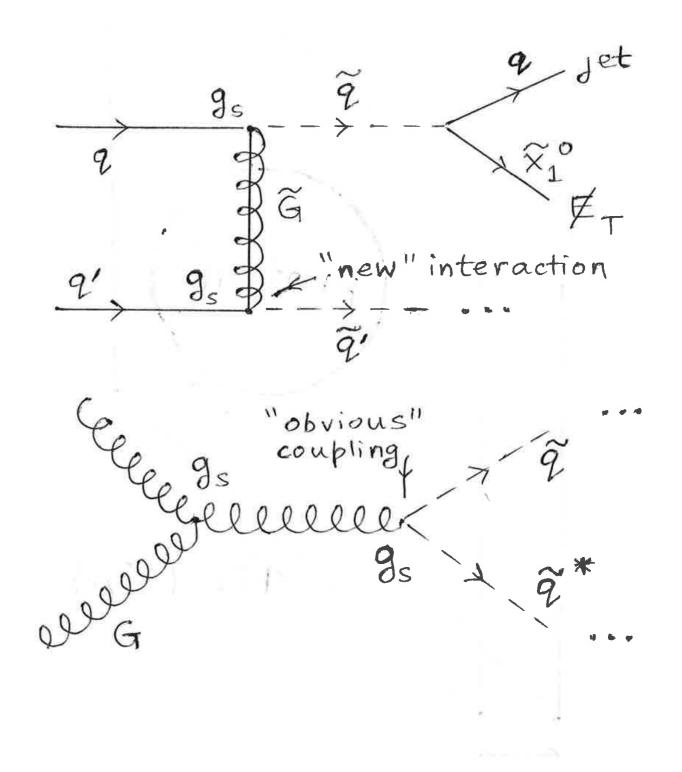
In the second second

Detour: (stable) particle pair annihilation into SM cannot catch up with expanding universe

Thermal freeze-out: correct relic density for dark matter if WIMP (miracle)

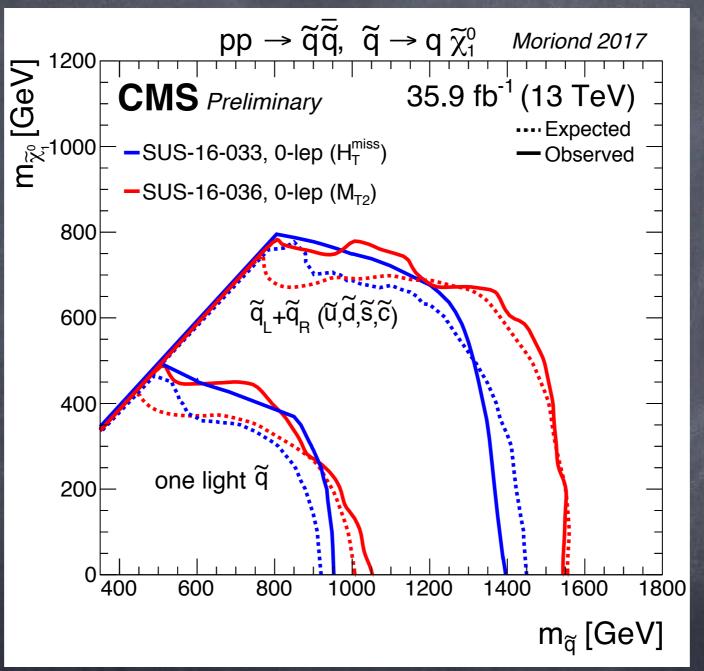
candidates: \tilde{W}^3 , \tilde{B} , $\tilde{\phi}^0_{u,d}$ ($\tilde{\nu}$ disfavored by direct detection via Z exchange)
...mix (neutralinos): $\tilde{\chi}^0_{i=1...4}$ ($\tilde{\chi}^0_1$ is LSP)

(R-parity >>) Collider signals (general)


(Must) pair produce superpartner

…each of which decays into LSP + SM

missing transverse momentum + leptons/jets/photons


Collider signals: example 1

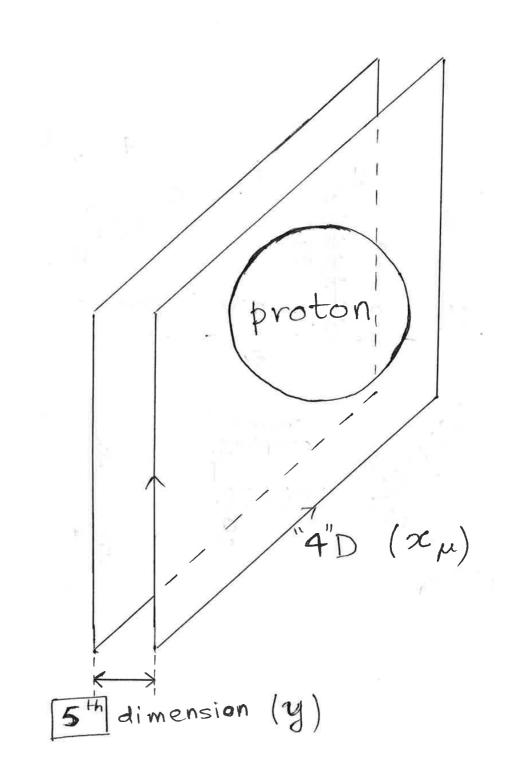
Squark production

Collider signals: limits

\odot based on jets + p_T

(SM background: Z+jets...need accurate calculations: see Boughezal lecture)

Extra Dimensions (Solutions to both Planck-weak and flavor hierarchy problems)

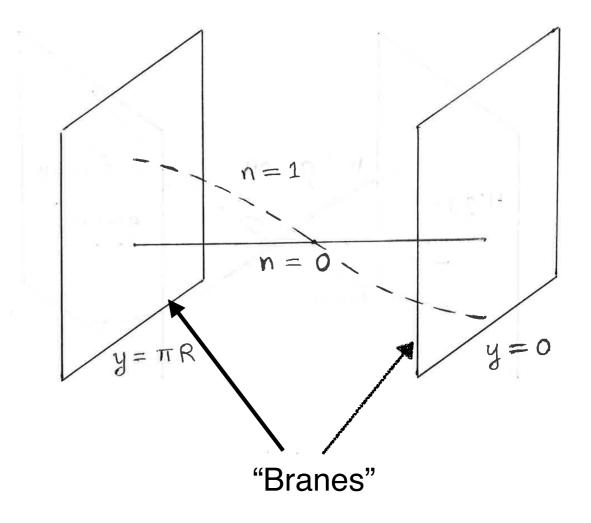

(BSM II)

Extra dímensions: basic idea

(reviews in hep-ph/0404096, hep-ph/0510275, hep-th/0508134, hep-ph/0605325,...)

Why haven't we "seen" it?

⊘ It's small!


Why should it be compact/"small"?

If 5th dimension was infinite, Newton's law $\propto 1/r^3$ (Gauss' law)

 ${oldsymbol o}$ we have measured it to be $\propto 1/r^2$ down to 100 μ m

What can we see in future (I)?

- SM field (x_{μ}, y) :
 "Fourier" expand (compact) y
- From 4D viewpoint, dynamics in y similar to quantum mechanics of particle in 1D infinite potential well
- Solution Kaluza-Klein (KK) modes (still function of x) with profile in y and quantized $p_5 \sim n/R$



What can we see in future (II)?

- Each KK mode like massive field (particle upon quantization) from 4D viewpoint: m_{4D}
- $E^{2} = |\bar{p}|^{2} + p_{5}^{2} + M_{5D}^{2} \Rightarrow$ $\bar{p} = 0 \text{ mode (at rest in 3D): } E \sim n/R \Rightarrow$ (rest) mass, $m_{4D} \sim n/R$

- lightest mode (n = 0) identified with observed/SM
- heavier (KK) modes (n ≠ 0):
 new particles (signals + solve problems)
- KK mass scale $> \sim$ TeV, haven't seen it yet!

4D particle content

	$\begin{array}{c} \text{SM particle} \\ n = 0, \text{spin} = S \end{array}$	$\begin{array}{c} \text{KK mode} \\ n = 1, 2, \text{ spin} = S \end{array}$	$ SU(3)_c $	$SU(2)_w$	$U(1)_Y$
 Assume all SM 	$\left(\begin{array}{c} u \\ d \end{array}\right)_i$	$\left(\begin{array}{c} u^{(n)} \\ d^{(n)} \end{array}\right)_i$	3	2	$\frac{1}{6}$
fields	u_i^c	$u_i^{c\ (n)}$	$\overline{3}$	1	$-\frac{2}{3}$
propagate in	d_i^c	$d_i^{c\ (n)}$	$\overline{3}$	1	$\frac{1}{3}$
extra dimensional	$\left(\begin{array}{c} u \\ e \end{array} \right)_i$	$\left(egin{array}{c} u^{(n)} \\ e^{(n)} \end{array} ight)_i$	1	2	$-\frac{1}{2}$
"bulk"	e^c_i	$e_{i}^{c\ (n)}$	1	1	1
(some fields	W	$W^{(n)}$	1	3	0
localized on	<i>G</i>	$G^{(n)}$	8	1	0
brane also	B	$B^{(n)}$	1	1	0
possible: no KK modes for these)	$\left(\begin{array}{c}\phi^+\\\phi^0\end{array}\right)$	$\left(\begin{array}{c}\phi^{+\ (n)}\\\phi^{0\ (n)}\end{array}\right)$	1	2	$\frac{1}{2}$

Simplest case: scalar field on circle (with 5D mass term only)

Summary (see back-up for technical details)

• Profiles:

n = 0 (zero-mode): constant in y n = 1, 2... (KK modes): $\sin / \cos ...$

• Masses: $m_{4D\ n}^2 = M_{5D}^2 + n^2/R^2$

Fermion on "orbifold" (semi-circle)

(Solve general wave equation, with 5D and brane-localized mass/kinetic terms to obtain modes)

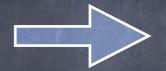
 exponential profile for fermion zero-modes (massless) (cf. flat for scalar earlier)

not m_{4D}

$$\sim e^{-M_{5D L}y}, e^{+M_{5D R}y}$$

 can get exponential profile for zero-mode even for scalar

Technically: gauge field...


$$\mathcal{A}_M = \mathcal{A}_{\mu=0,1,2,3} + \mathcal{A}_5$$

\$\mathcal{A}_{\mu}\$ modes behaves as vectors (spin-1) from 4D viewpoint
 \$\mathcal{A}_5\$ modes behaves as scalars from 4D viewpoint (Higgs?...see later)

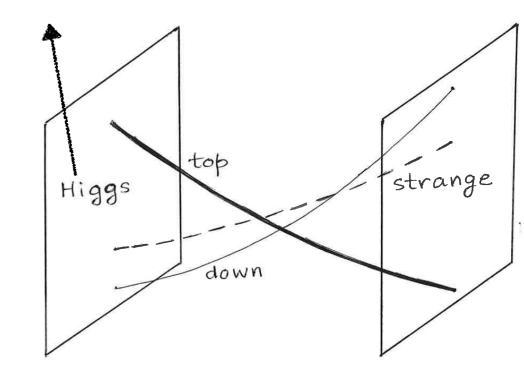
Interactions of 4D modes...

5D Dirac matrices

 $\int d^4x \, dy \, g_{5D} \bar{\Psi} \Gamma^M \mathcal{A}_M \Psi \Rightarrow$ $\int d^4x \, g_{4D \ mnp} \overline{\psi_L^{(m)}} A_\mu^{(n)} \gamma^\mu \psi_L^{(p)}:$ $g_{4D \ mnp} \sim g_{5D} \int dy \ (m^{th} \text{profile}) \times (n^{th} \text{profile}) \times (p^{th}..)$

 \circ coupling between modes \propto overlap of profiles

Summary

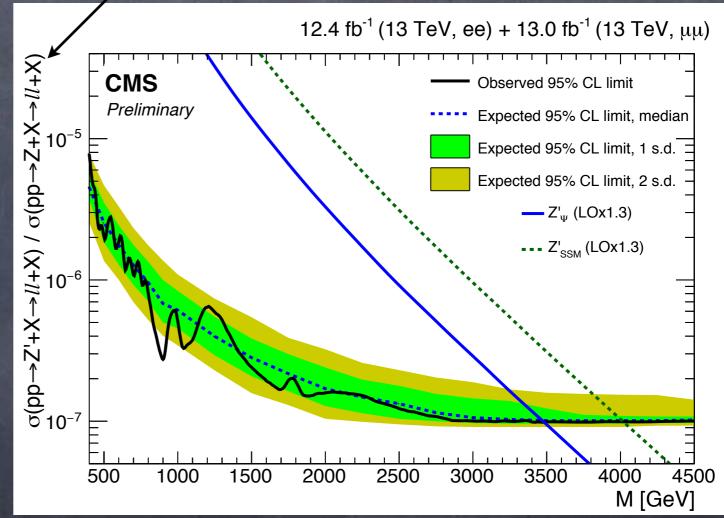

- 5D field tower of (massive) KK modes (from 4D viewpoint)
- profiles from (generalized) wave equation in 5D space-time
- Coupling of particles \propto overlap of profiles

Extra dímensions: "application"

Solution to flavor (hierarchy) puzzle Yukawa coupling: $\lambda_{4D} \sim \lambda_{5D} \times \int dy \ e^{(-M_{5D}\ L + M_{5D}\ R + M_{5D}\ \phi})y}$

- choose M's so that overlap near Higgs brane dominates
- $\bullet m_d \ll m_s$ due to (exponential) hierarchical fermion profiles at Higgs brane: $\lambda_{4D} \sim \lambda_{5D} \ e^{(-M_{5D L} + M_{5D R})\pi R}$ (do not need hierarchies in 5D Yukawa or M_{5D} for fermions) $\lambda_d^{22} \gg \lambda_d^{12} \gg \lambda_d^{11}$

For simplicity, shown localized (in general, peaked near brane)

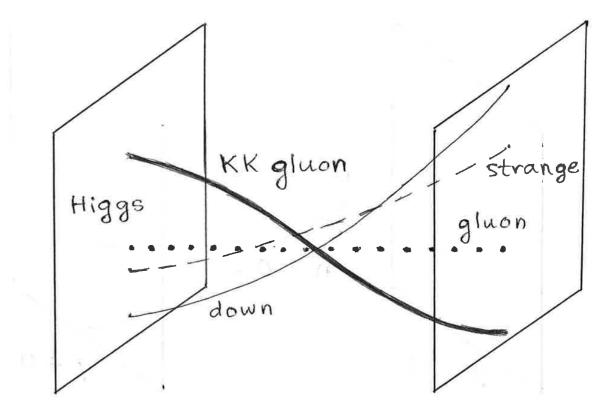

Signals for KK modes I (general)

resonant production of single KK gauge mode a la SM Z:

 $q\bar{q} \to \mathrm{KK} \ Z \to l^+ l^-$

peak in dilepton invariant mass

 adapt LHC Z' search (include appropriate couplings) ratio of Z' and SM Z cross-section x BR


(from CMS-PAS-EXO-16-031)

Signals for KK modes (II)

 Coupling to KK gauge mode is flavor-dependent: in overlap, KK common, but fermion varies

cf. coupling to gauge zero mode (flat) is universal

(see later/back-up: flavor
problem; KK gluon decays
mostly to top quarks)

Summary

- solution to flavor (hierarchy) puzzle based on fermion profiles in extra dimension...
- KK/massive gluon, Z... resonances
- LHC sensitive only if KK mass scale $\sim \text{TeV}$
- ...but (so far) can be (much) heavier (smaller ruled out by current limits)
- ...it has to be TeV if use extra dimension to also solve Planck-weak hierarchy problem

Extra dímensions: "complete" model

Extra dimension solves Planckweak hierarchy problem (I)

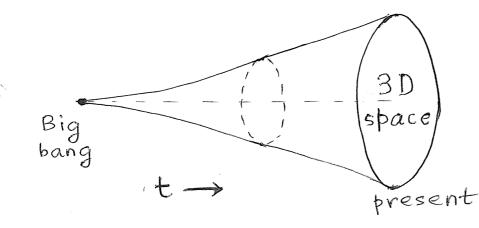
KK particles cut-off Higgs mass divergence...like superpartners, KK's must be <~TeV</p>

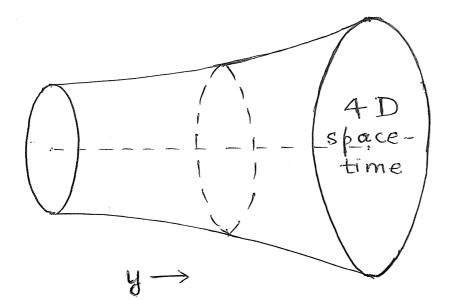
Principle: Higgs is A₅ mode ("extra" component of 5D gauge field)

no quadratic divergence from E ~ KK mass scale (5D regime):
 (5D) gauge invariance protection "extended" from spin-1 to
 0 (these two 4D spins are related via 5th dimension)

S...cf. SUSY...

- (chiral) symmetry protection for fermion: extended to scalar...
- ...the two spins (differing by 1/2) related by SUSY


Extra dimension solves Planckweak hierarchy problem (II)


SUSY, "new" hierarchy problem:
KK mass scale $\ll M_{Pl}$?

Solution: warped extra dimension

Warped extra dimension intuitively (see back-up for technically) Analogy with expanding universe

gravitational red-shift generates hierarchies in mass scale between different positions in 5th dimension

3D space expands with time

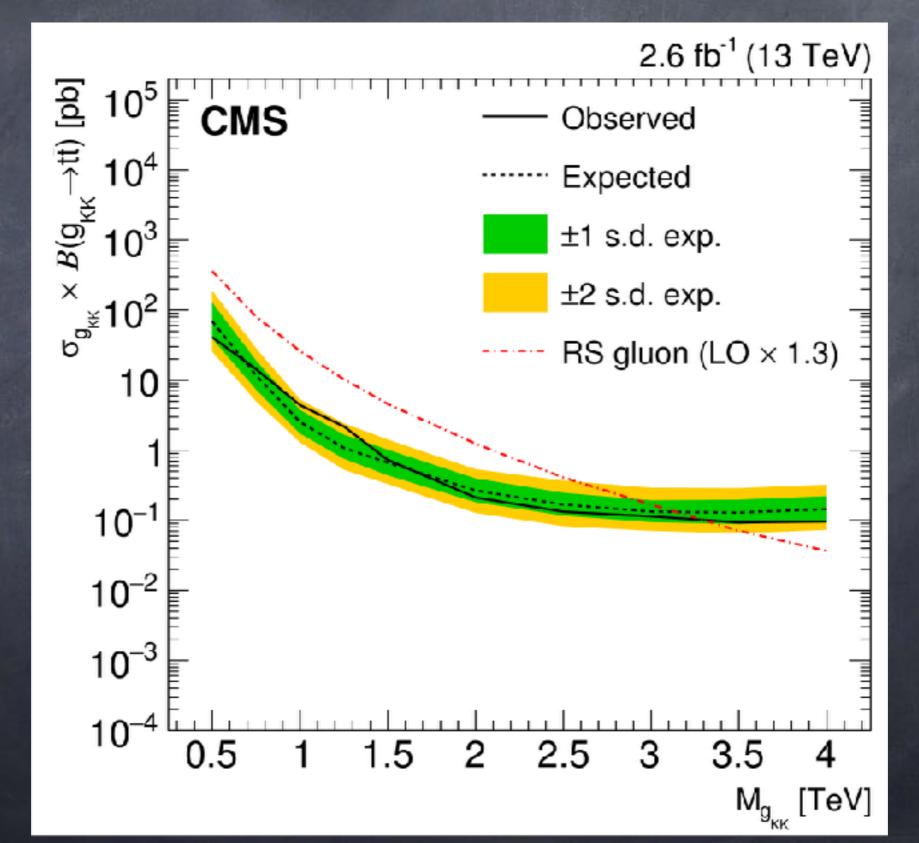
VS.

4D space-time expands with moving along 5th dimension

A bottomline: KK gluon signal (decays to top) (see back-up for details)

ø production suppressed due to small coupling to proton

ø decay dominated by top quark with stronger coupling


 mass > ~3 TeV due to constraints from virtual effects (see back-up)

KK gluon signal: decays to boosted top

- Senergy of each top quark is 1.5 TeV
- \odot top decay products (bW, W
 ightarrow l
 u or $qar{q}$) collimated
- Iooks like QCD jet at 0th order
- jet substructure (see Larkoski lecture) to distinguish the two

...already there!

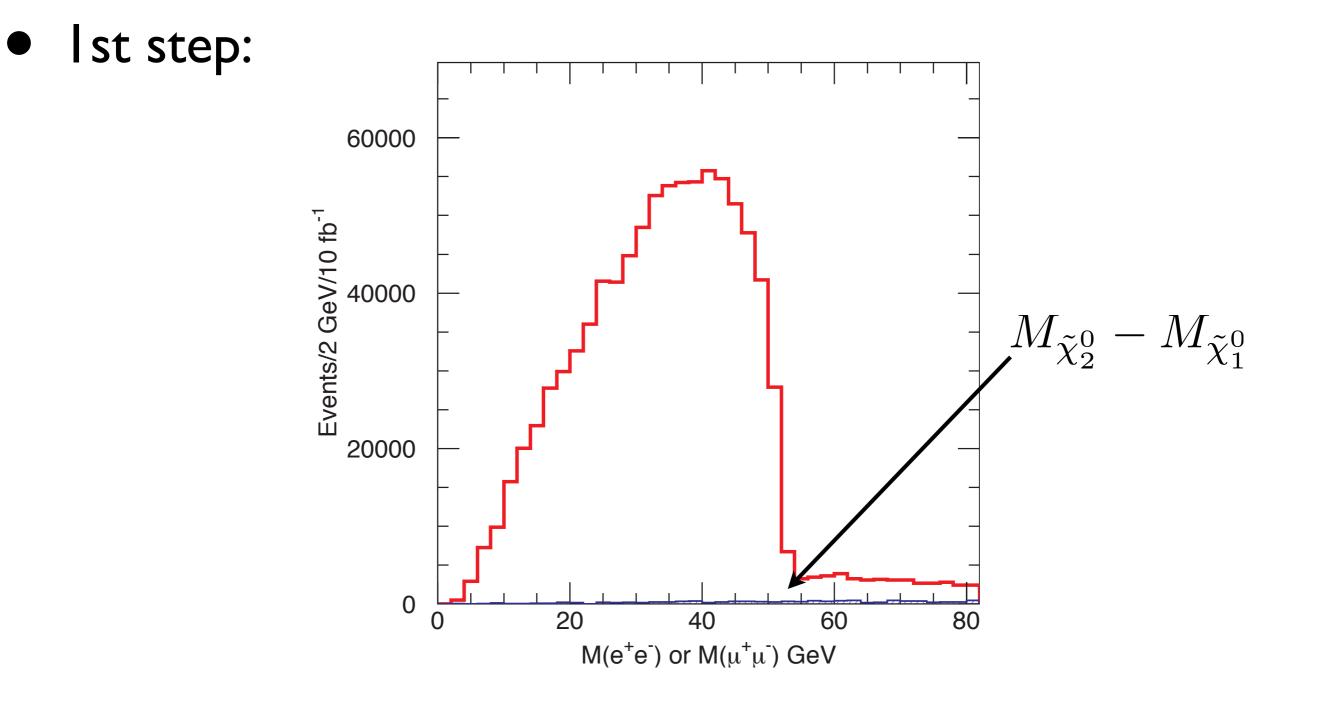
• CMS-B2G-16-015

Outlook (personal opinion!) • natural region [O(10)% fine-tuning] of both SUSY and extra dimensions (~TeV mass new particles) disfavored by LHC null results

•naturalness is a "slippery slope": O(0.1)% fine-tuning (~10 TeV mass new particles) clearly out of reach of LHC, but still (much, much) better than SM (1 part in 10³⁰)

keep looking at LHC (especially hidden signals) + 100 TeV collider

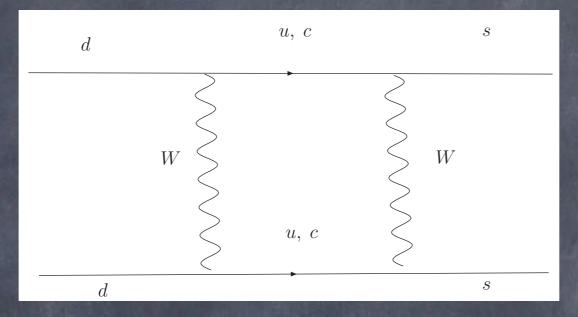
SUSY collider signals: example 2


cascade decay of squark to LSP (vs. direct decay earlier):

$$\begin{split} \tilde{q} &\to \tilde{\chi}_2^0 + q \\ \tilde{\chi}_2^0 &\to \tilde{\chi}_1^0 + l^+ l^- \end{split}$$

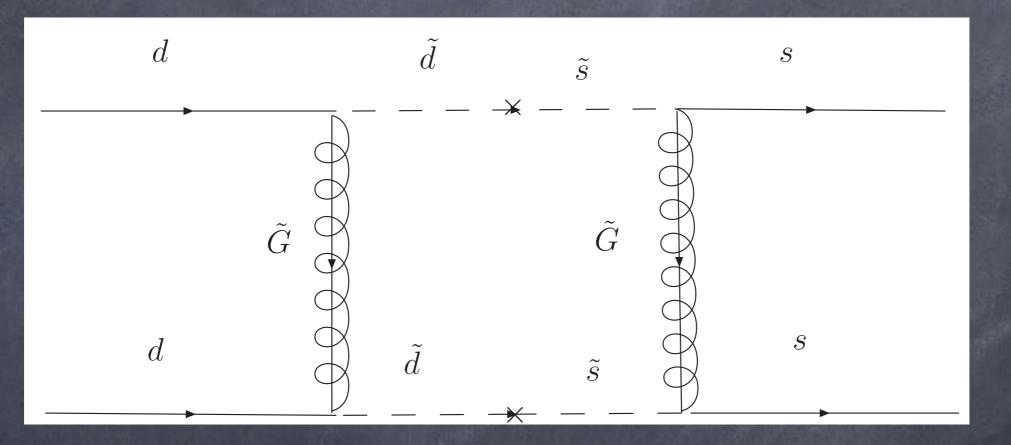
invariant mass of lepton pair, then adding jet...contains information about masses

Collider signal: future


 ...from chapter 20 of ATLAS Detector and Physics Performance Technical Design Report LHCC 99-14/15

Virtual effects of superpartners (see, e.g., pages 25, 26 of hep-ph/9612389)

No flavor problem in SM


Seview of SM box diagram for $K^0 - \overline{K^0}$ mixing

Glashow-Illiopoulos-Maini (GIM) mechanism:

suppression
$$\propto \frac{m_c^2 - m_u^2}{M_W^2}$$

SUSY flavor problem loop due to R-parity (each interaction has 2 sparicles)

Generic SUSY breaking (\tilde{d}, \tilde{s} mix) \longrightarrow too large effect

Solution to SUSY flavor problem

SUSY-GIM": squarks degenerate/don't mix

Realization: gauge (flavor-blind) mediation of SUSY breaking

Image: squarks heavier than sleptons

Technically: (real) scalar field on circle (with 5D mass term only) $S_{5D} = \int d^4x \int dy \left[\left(\partial^M \Phi \right) \left(\partial_M \Phi \right) - M_{5D}^2 \Phi \Phi \right]$

• Compactify on a circle (S^1) : $-\infty < y < \infty$ with $y \equiv y + 2\pi R$

Periodic boundary condition: $\Phi(y = 2\pi R) = \Phi(y) \Rightarrow$

 $\Phi = \frac{1}{\sqrt{2\pi R}} \sum_{n=-\infty}^{n=+\infty} \phi^{(n)}(x) e^{iny/R} \xrightarrow{n=0 \text{ (zero-mode): constant in } y}{n=1,2... \text{ (KK modes): sin / cos ...}}$

Substitute into S_{5D} , use orthogonality of profiles:

$$S_{4D} = \int d^4x \sum_n \left[\left(\partial_\mu \phi^{(n)} \right) \left(\partial^\mu \phi^{(n)} \right) - \left(M^2 + \frac{n^2}{R^2} \right) \phi^{(n)} \phi^{(n)} \right]$$

• 4D viewpoint: Tower of 4D fields (KK modes), $\phi^{(n)}$ with mass²: $m_{4D n}^2 = M_{5D}^2 + n^2/R^2 (n^2/R^2 \text{ from } \partial_5 \text{ acting on profile})$

Technically: Fermion field on orbifold

 on circle: fermion zero-modes not chiral (both LH and RH) (unlike SM: LH doublet, RH singlet)

go to orbifold to project out one zero-mode:

 S^1/Z_2 : $y \leftrightarrow -y$ in addition to $y \equiv y + 2\pi R$

• exponential profile for fermion zero-modes (cf. flat for scalar earlier) due to 5D mass term: not m_{4D} $\sim e^{-M_{5D} L y}, e^{+M_{5D} R y}$

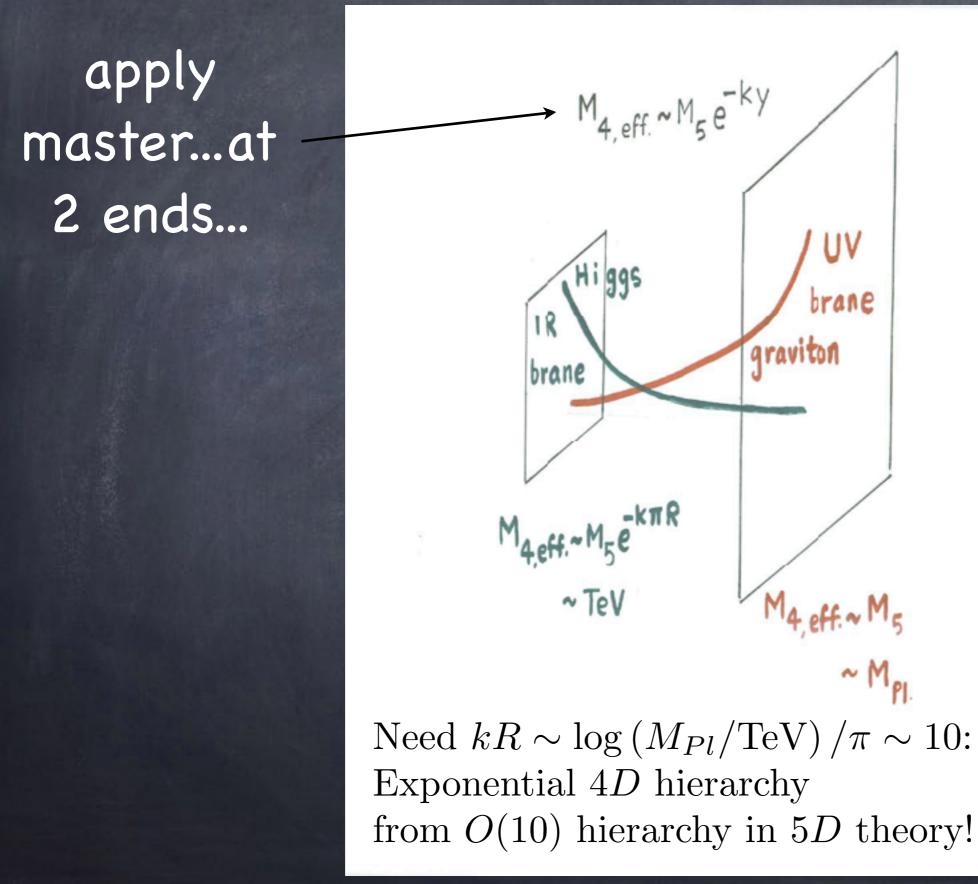
(Solve general wave equation/boundary conditions to obtain modes: can get exponential profile for zero-mode even for scalar)

Extra dimensions: What about neutrino mass? • Add ν_R with profile...similar to quarks? ...but neutrino masses VERY small and mixing large! \circ choose $M_{5D \nu_R}$ so that overlap near other brane dominates: $\lambda_{4D} \sim \lambda_{5D} e^{(-M_{5D}\phi)\pi R}$ very small neutrino mass due to Higgs tail: NOT due to smallness of ν profiles at Higgs brane: cf. quarks and charged leptons mixing large since all 3 profiles similar near other brane:

$$\lambda_{\nu}^{33} \sim \lambda_{\nu}^{23} \sim \lambda_{\nu}^{22}$$

Warped extra dimension technically (I)

• Bulk + brane cosmological constants \Rightarrow

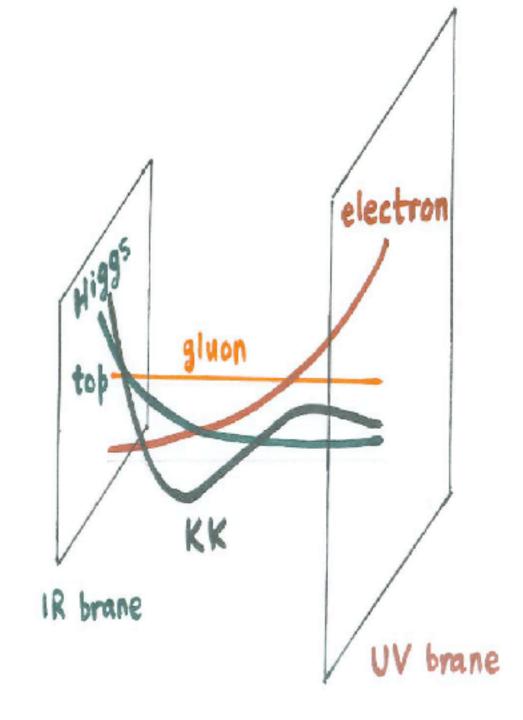

$$(ds)^2 = e^{-2ky} \eta_{\mu\nu} (dx)^{\bar{\mu}} (dx)^{\nu} + (dy)^2$$

flat 4D

• Master equation:

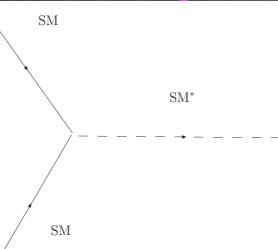
 $M_{4D, \text{eff.}}(y) \sim M_{5D, \text{fund.}} \times e^{-ky} \text{ (warp factor)}$

Warped extra dimension technically (II)
 Gravity and Higgs: Randall-Sundrum (RS1) model

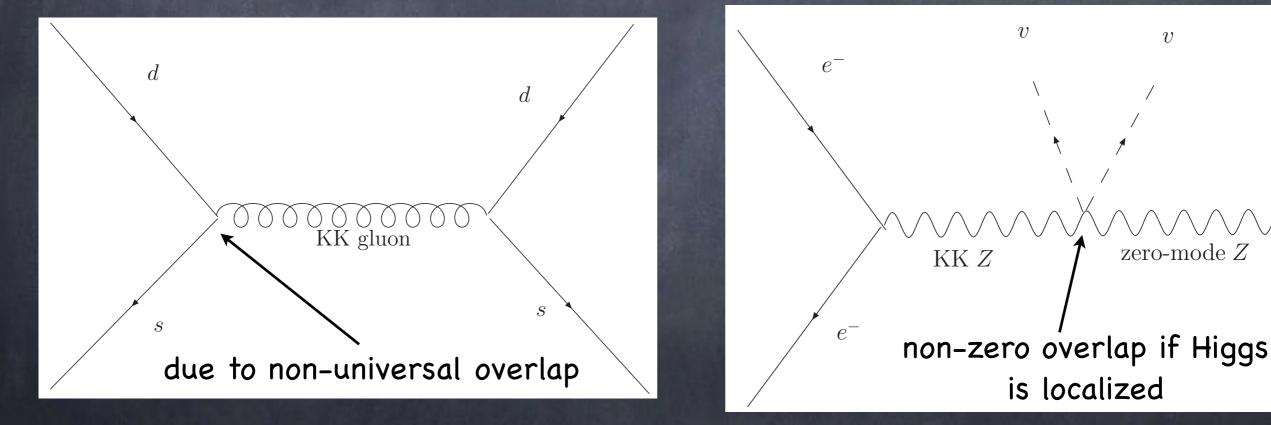


KK's localized near Higgs/TeV brane

…due to curvature (cf. flat extra dimension earlier)


KK mass ~ Higgs brane scale
 (~ TeV)

 KK's couple strongly to Higgs, top (weakly to light fermions): based on overlap of profiles


Virtual effects of (extra-dímensíonal) KK modes

Summary (rough)

no parity

Tree-level contributions to flavor and EW precision tests

Iimit on KK scale: ~O(10) TeV [built-in mechanism: cf. O(1000) TeV in SUSY] → O(3) TeV model-building/mild tuning

AdS/CFT "duality"

- tower of KK's like tower of hadrons from (purely) 4D strong dynamics
- warped extra dimension solution dual to Higgs compositeness at TeV scale