

The Particle/Nuclear Interface - II

Thia Keppel CTEQ Summer School

Lecture Scheme - I

in ter face 'in(t)ər fās/ noun

1. a point where two systems, subjects, etc., meet and interact.

DAY 1

- Introduction
- History and Basics of Electron Scattering – Some Reminders
- ✓ Jefferson Lab
- 1D to 3D Nucleon Structure
 - Form Factors and PDFs
 - Large x
- Nucleons in the Nuclear Medium

DAY 2

- Finish What I Didn't Yet From Day 1!
- The Electron Ion Collider

Jefferson Lab

Lecture Scheme - II

DAY 1

- Introduction
- History and Basics of Electron Scattering – Some Reminders
- ✓ Jefferson Lab
- 1D to 3D Nucleon Structure
 - ✓ Form Factors and PDFs
 - Large x
- Nucleons in the Nuclear Medium

DAY 2

- Finish What I Didn't Yet From Day 1!
- The Electron Ion Collider

Inclusive Electron-Nucleus Scattering – historical example

Science

4

Jefferson Lab

The Classic A(e,e'p)A-1 Problem

²⁰⁸Pb(e,e'p)²⁰⁷Tl

10⁰

(x 10⁵)

10⁵

Independent-Particle Shell-Model is based upon the assumption that each nucleon moves independently in an average

potential (mean

induced by the

surrounding

nucleons

field)

¹⁶O ₃₁P 0.8 10⁻² $2d_{5/2}$ 10² ρ(p_m^{eff},p') [(GeV/c)⁻³] 1g_{7/2} S/(2j+1) 0.6 10⁻¹ 10^{-4} ⁷Li ¹²C 0.4 10⁻⁶ 10-4 10⁻⁸ 0.2 10⁻⁷ VALENCE PROTONS 10-10 0.0 10¹ 0 200 400 0 200 400 p_m^{eff} [MeV/c]

target mass The (e,e'p) data for knockout of valence and deeply bound orbits in nuclei gives spectroscopic factors that are 60 - 70% of the mean field prediction.

1.0

Mean Field Theory

⁴⁰Ca

⁴⁸Ca ₉₀Zr

²⁰⁸Pb

10²

Possible Answer: *Short-Range Correlations*

Nucleons are made up of quarks, so does NOT violate Pauli exclusion principle

If Correct Raises More Questions

- What fraction of the momentum distribution is due to 2N-SRC?
- What is the relative momentum between the nucleons in the pair?
- What is the ratio of pp to pn pairs?
- Are these nucleons different from free nucleons (e.g. size)?

Benhar et al., Phys. Lett. B 177 (1986) 135.

Coincidence (e,e'pN) Exclusive Measurement

Study nucleon pairs and the fraction that contribute to momentum tail.

$$p_{m} = E_{e} - E_{e'} - p = q - p$$

$$E_{m} = \omega - T_{p} - T_{A-1} = E_{sep} + E_{exc}$$

$$F_{m} = \omega - T_{p} - T_{A-1} = E_{sep} + E_{exc}$$

$$F_{m} = \omega - T_{p} - T_{A-1} = E_{sep} + E_{exc}$$

x > 1, $Q^2 = 1.5$ [GeV/c]² and missing momentum of 500 MeV/c

BigBite and Neutron Detector in Hall A

First step along the way to many successful high luminosity, large acceptance measurements. a

⁴He(e,e'pN) Results – recoiling neutrons favored

I. Korover et al., Phys. Rev. Lett. 113 (2014) 022501.

Proton-Neutron Pairing In All Nuclei

Or Hen et al. (Jefferson Lab CLAS Collaboration) Science 346 (2014) 614.

Precision (e,e') x>1 Cross Sections

N. Fomin *et al.,* Phys. Rev. Lett. **105** (2010) 212502 – JLab Hall C

- Electron-nucleus scattering allows for F₂ structure functions above x = 1
- Nucleons are close together and interact via the (poorly-constrained) repulsive core of the N–N interaction, yielding high momentum nucleons.
- Deuteron limited to x < 2, etc.
- Deep inelastic probe of very high momentum "superfast" quarks

two nucleons

Precision (e,e') x>1 Cross Section Ratios

N. Fomin et al., Phys. Rev. Lett. 108 (2012) 092502.

The Deep Inelastic EMC Effect

- The EMC effect is the observation that the ratio of nuclear DIS cross sections to deuterium is not one
 - EMC paper: J.J. Aubert et al.
 PLB 123 (1983) 275
 - Simple Parton Counting Expects One
 - <u>MANY Explanations, multiple</u>
 <u>experiments</u>
- Behavior
 - Q²-independent
 - Universal x-dependence (shape)
 - Magnitude varies with A a density effect?....

Jefferson Lab EMC Effect Data

J. Seely et al., Phys, Rev. Lett. 103 (2009) 202301.

average density.

Holistic View of inclusive EMC & SRC Data

S. Malace, D. Gaskell, D.H., I. Cloet, Int. J. Mod. Phys. E 23 (2014) 1430013

- Scaling plateaus are likely due to proton-nucleon local density correlations
- So could the EMC slopes (x_B<0.7) and SRC plateaus (x_B>1.5) correlated?!

x>1 Ratios and EMC Slope Correlation

L. Weinstein, E. Piasetzky, DH, J. Gomez, O. Hen, and R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

Origin of the EMC effect? Not a smoking gun, but highly suggestive....

EMC. x>1 experiments to run in JLab Hall C *this Fall*!

Duality and the EMC Effect (Neutrino friends take note!)

See S. Malace lectures for duality!

- *Red = resonance region data*
- Blue, purple, green = deep inelastic data from SLAC, EMC
- Medium modifications to the structure functions *are the same* in the resonance region as in the DIS
- *Duality observed in nuclei*

J. Arrington, R. Ent, CK, J. Mammei, I. Niculescu, Phys.Rev. C73 (2006) 035205

Experimental Studies of Nuclear Effects with Neutrinos:

until recently essentially NON-EXISTENT

J. Mousseau et al., PRL 112 231801 (2015)

kT detector systems – *nuclear effects can matter!*

Data now coming from MINERvA experiment at Fermilab:

- Neutrino-nucleus scattering
- Cross section measurements possible
- Nuclear ratios

Note A-dependence at lowest x-bin

- A drop in x for Pb?
- Data at low Q² (< 1 GeV²)
- Not yet isoscalar corrected
- More and higher energy data en route

Important alert: the deuteron is also a nucleus!

<u>Neutron</u> structure is typically derived from deuterium target data by subtracting proton data

.....but.....

<u>Large</u> uncertainty in unfolding nuclear effects (Fermi motion, off-shell effects, deuteron wave function, coherent scattering, final state interactions, nucleon structure modification ("EMC"-effect),.....

 F_2^n/F_2^p (and, hence, d/u) is essentially unknown at large x:

- Conflicting fundamental theory pictures
- Data inconclusive due to uncertainties in deuterium nuclear corrections

Large Uncertainties on Large x Valence pdfs

DIS from A=3 Mirror Nuclei (E12-10-103)

 $\frac{F_2^{\circ_H}}{F_2^p + 2F_2^n}$

$$R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}}$$
, $R(^{3}\text{H}) =$

- Mirror symmetry of A=3 nuclei
 - Extract F₂ⁿ/F₂^p from ratio of measured ³He/³H structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

R = SUPER ratio of "EMC ratios" for ³He and ³H

- Relies only on <u>difference</u> in nuclear effects in ³H, ³He
- Calculated to within 1%
- Most systematic and theoretical uncertainties cancel

Tritium Experiment Group Preparations in Jlab Hall A

Other 12 GeV era experiments will also access d/u at large x...

- Tagged deep inelastic scattering
- Parity violating deep inelastic scattering
- Polarized structure functions can provide d/u theory guidance

Nucleon Model	F_2^n/F_2^p	d/u	∆u/u	∆d/d	A ₁ ⁿ	A ₁ ^p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark	1/4	0	1	-1/3	1	1
pQCD	3/7	1/5	1	1	1	1

Hmmm... nuclear medium modifications are interesting...

But, let's check out polarized partons....

Polarized DIS

- Consider the case when the beam electron and target nucleon are both polarized along the scattering axis....
- Helicity conservation the virtual γ inherits some of the incident lepton helicity
- The electromagnetic interaction will conserve helicity. So...
- A + (-) helicity quark can only absorb a + (-) helicity photon.
- Study the difference under reversal of electron/photon helicity (or equivalently reversing the target spin)....
- Determine the probability that the struck quark has the same helicity as the incident lepton for a fixed spin orientation of the proton.

Polarized Structure Functions

Measuring High-x Structure Functions - polarized

REQUIRES:

 $A_{1p}^{\pi+}$

HERMES

SMC h-

 $A_{1d}^{\pi+}$

SMC h+

0.2

0.7

0.6

0.5

0.4 0.3

0.2

0,1

-0.1

0.5

0.4 0.3

0.2

0

-0.1

-0.2

-0.3

0

Asymmetry

- High beam, target polarization
- High electron current
- Large solid angle spectrometers

 $A_{1p}^{\pi-}$

 $A_{1d}^{\pi-}$

SMC h-

0.2

0.4

x

SMC h-

- Polarized PDF efforts JAM
- Broad JLab12 program!

CLAS

This

0.4

experiment

0.6

12 GeV Era Polarized PDFs

The Incomplete Nucleon: The Spin Puzzle

Can this puzzle maybe be solved by orbital angular momentum?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

- Proton has spin-1/2
- Proton is a composite system consisting of spin-1/2 quarks and spin-1 gluons

Try a cross-product or something three-dimensional....

Classical: ~ r x p

I've got to move on, but there are a couple more things that deserve a last fast look.....

Parity Violation Program at JLab

polarization

- Strangeness Form Factors (complete)
 HAPPEX (Hall A)
 G0 (Hall C)
 Luminosity,
- PREX neutron skin

first PREX (²⁰⁸Pb) experiment completed PREX-II and CREX (⁴⁸Ca) preparation ongoing

• Qweak (to be released) proton weak charge lepto-quark couplings

MOLLER

electron weak charge purely leptonic BSM physics at 38 TeV scale!

SoLID

lepto-quark couplings lepto-phobic Z' d/u, higher-twist

New Opportunity: Searches for A' at Jefferson Lab

- BNL "g-2" expt: Δa_μ(expt-thy) = (295±88) x 10⁻¹¹ (3.4 σ)
- No evidence for SUSY at LHC (yet)
- Another solution: A', a massive neutral vector boson

also useful for dark matter models

- 3 Jefferson Lab proposals:
 - APEX test run (Hall A) published
 - HPS test run (Hall B) complete HPS engineering/1st physics run – complete
 - DarkLight test run (FEL) complete

12 GeV JLab - Broad Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

Hall C – precision determination of valence quark properties in nucleons/nuclei

Hall A – polarized 3He, future new experiments (e.g., SBS, MOLLER and SoLID)

ENERGY Science

Orbital angular momentum....into the (not so distant) future....

What are we missing?

 We discovered that (nearly) massless quarks and gluons make up the nucleon and that QCD governs their interactions.

- We had hoped to find out how quarks and gluons and their interactions give rise to the characteristics of the nucleons.
 - Spin
 - Mass
 - Bulk
- We also hoped that we would be able to find out how NN interactions work in terms of QCD.
 - How nuclear forces arise.
 - How nuclear characteristics come about
- We were able to do this kind of things with EM and atoms.
- So far we have failed...

What longitudinal factorization did

 $F_i(x,Q^2) = f_a \otimes \widehat{\sigma}$ lim $Q^2 \rightarrow \text{large}, x \text{ fixed}$

Function only of x (i.e. longitudinal momentum) Our quarks and gluons as constituents of the proton only exist longitudinally.

Limits of Longitudinal Information

infinite momentum frame

What we know

What is the quark and gluon structure of the proton? -orbital motion? -color charge distribution? -how does the mass come about?

-origin of nucleon-nucleon interaction?

Parton frozen transversely. Framework does not incorporate any transverse information.

But this was the only way to define quark-gluon structure of proton in pQCD.

Transverse Momentum Dependent Distributions (TMD): k_t Generalized Parton Distributions (GPD): b_t

New Paradigm for Nucleon Structure

3D Imaging of Quarks and Gluons

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D (transverse spatial) + 1D (longitudinal momentum) coordinate space images from exclusive scattering

SIDIS Observables Reveal Interesting Behavior of Quarks

JLab measurements of ³He (neutron) single-spin asymmetries X. Qian *et al.*, PRL 107, 072003 (2011)

ENERGY

Science

- Indicative of quark orbital motion
- Foundation for future mapping in four kinematic dimensions (x, Q², z, p_T) of transverse-momentum dependent parton distributions

Transverse SSA in Proton-Proton Reactions

$$p^{\uparrow}$$

$$A_N = \frac{1}{P_{\text{beam}}} \frac{N_{\text{left}}^{\pi} - N_{\text{right}}^{\pi}}{N_{\text{left}}^{\pi} + N_{\text{right}}^{\pi}}$$

-JSA

U.S. DEPARTMENT OF Office of Science

In collinear picture, the QCD predict small SSAs with transversely polarized protons colliding at high energies

 $A_N \sim \alpha_s m_q / P_{h\perp}$

C. Aidala et al., Rev. Mod. Phys. 85, 655

Much Data = Parton Distributions Functions

12 GeV JLab - Broad Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

TMDs and GPDs comprehensive study

Hall A – polarized 3He, future new experiments (e.g., SBS, MOLLER and SoLID)

ENERGY Science

Ultimate TMD statistical precision in valence region

Hall C – precision determination of valence quark properties in nucleons/nuclei

THE NEXT LEAP FORWARD: EIC

Experimental Challenge of the EIC

Electron-Ion Collider: Cannot be HERA or LHeC: proton energy (TeV) too high

July 2017

Understanding the Nucleon at the Next Level

Nucleon: A many-body system with challenging characteristics

Relativistic (M_{proton} >> M_{quark})

Strongly Coupled (QCD)

Quantum Mechanical (Superposition of configurations)

Measure in the Multi-Body regime:

Region of quantum fluctuation + non-perturbative effects → dynamical origin of mass, spin.

For the first time, get (almost?) all relevant information about quark-gluon structure of the nucleon

Designing EIC \rightarrow Designing the right probe

- Resolution appropriate for quarks and gluons
- Ability to project out relevant Q.M. configurations

Parameters of the Probe

Ability to change **x** projects out different configurations where different dynamics dominate

Ability to change Q² changes the resolution scale

 $Q^2 = 400 \text{ GeV}^2 => 1/Q = .01 \text{ fm}$

Where EIC Needs to be in x (Nucleon)

Where EIC needs to be in Q^2

- Include non-perturbative, perturbative and transition regimes
- Provide long evolution length and up to Q² of ~1000 GeV² (~.005 fm)
- Overlap with existing measurements

Disentangle Pert./Non-pert., Leading Twist/Higher Twist

Measuring k_t and b_t

Parameters of the Probe (Nuclei)

Note: the x range for nuclear exploration is similar to the nucleon exploration

QCD at Extremes: Parton Saturation

HERA discovered a dramatic rise in the number of gluons carrying a small fractional longitudinal momentum of the proton (i.e. small-x).

> This cannot go on forever as x becomes smaller and smaller: parton recombination must balance parton splitting. i.e. Saturation—unobserved at HERA for a proton. (expected at extreme low x)

Will nuclei saturate faster as color leaks out of nucleons?

Luminosity/Polarization Needed

Central mission of EIC (nuclear and nucleon structure) requires high luminosity and polarization (>70%).

Past, Existing and proposed DIS Facilities

EIC Parameters

- US EIC Machine design aims from the <u>EIC Whitepaper</u>
 - Highly polarized (~70%) electron and nucleon beams.
 - lon beams from deuterons to the heaviest nuclei (uranium or lead).
 - Variable center of mass energies from ~20 - ~ 100 GeV, upgradable to ~140 GeV.
 - High luminosity: ~10 ³³⁻³⁴ cm⁻² s⁻¹
 - Possibility of having more than one interaction region.
- Two proposed realization plans
 - Jefferson Lab: building on the existing 12 GeV CEBAF. <u>JLEIC Design</u>.
 - BNL: building on the existing RHIC.
 <u>eRHIC Design</u>.
 - <u>Recent review of acc. R&D</u>
- Similar performances, cost
- US EIC will likely be down-selected from one of these proposals.
- CD0 2018?

US-Based EIC Proposals

Comparison JLEIC and eRHIC (Jan. 2017)

July 2017

Worldwide Interest in EIC Physics

EIC: A Portal to a New Frontier

Dynamical System	Fundamental Knowns	Unknowns	Breakthrough Structure Probes (Date)	New Sciences, New Frontiers
Solids	Electromagnetism Atoms	Structure	X-ray Diffraction (~1920)	Solid state physics Molecular biology
	Specificiti J <thj< th=""> J J <thj< td=""><td></td><td>Crystal Detection Crystal Detection Crystal Detection De</td><td></td></thj<></thj<>		Crystal Detection Crystal Detection Crystal Detection De	
Universe	General Relativity Standard Model	Quantum Gravity, Dark matter, Dark	Large Scale Surveys CMB Probes 🔏	Precision Observational Cosmology
	Marcola	CMB 1965	(~2000)	Costinuotogy
Nuclei and Nucleons	Perturbative QCD Quarks and Gluons	Non-perturbative QCD Stucture	Electron-Ion Collider (2030)	Structural QCD
July 2017	$\mathcal{L}_{QCD} = \overline{\psi} (i \vec{\vartheta} - g \mathbf{A}) \psi - \frac{1}{2} \text{tr} F_{\mu\nu} F^{\mu\nu}$ blue green green green antibius gluon blue gluon	2017		Breakthrough Just Ahead 63

Questions?....

Backups!

Neutron Structure Function provides access to d(x) PDF

E12-06-113 "BONUS12" Plan to run in first 1-2 years of Hall B CLAS12 Central CLAS12 Detector Data taking of 35 days on D_2 CJ11 and 5 days on H_2 PDF uncertainty with $L = 2 \cdot 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$ 8.0 🗱 nuclear uncertainty **Planned** BoNuS detector BONUS12 W>2 GeV DAQ and trigger **upgrade** 0.6 \square BONUS12 W>1.8 GeV DIS region with 🖌 SU(6) $- Q^2 > 1 \text{ GeV}^2/c^2$ ₩*> 2 GeV 0.4 $p_{s} < 100 \text{ MeV}/c$ helicity $\theta_{pq} > 110^{\circ}$ conserv. 0.2 high Largest value for $x^* = 0.80$ impact (bin centered $x^* = 0.76$) scalar diquark Relaxed cut of $W^* > 1.8$ GeV ()0.20.4 0.6 0.8 gives max. $x^* = 0.83$ Х

The technique works!

PVDIS Measurements - SoLID Proposed Setup

Solenoidal Large Intensity Device - 12 GeV Hall A at JLab Parity-violating DIS program on deuterium and hydrogen

$$\begin{aligned} A_{\rm PV} &\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right] \\ a_1(x) &= 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})} \end{aligned}$$

Clean Measurement of d/u with PVDIS

For high x on proton target:

$$a_1^p(x) = \left[\frac{12C_{1u}u(x) - 6C_{1d}d(x)}{4u(x) + d(x)}\right] \approx \left[\frac{1 - 0.91d(x)/u(x)}{1 + 0.25d(x)/u(x)}\right]$$

DSE - Wilson et al., Phys Rev C89, 025205 (2012)

- Three JLab 12 GeV experiments:
 - CLAS12 BoNuS spectator tagging
 - BigBite DIS ³H/³He Ratio
 - SoLID PVDIS ep
- The SoLID extraction of d/u is made directly from ep DIS: no nuclear corrections

Flavor Disparity in the Nucleon

When the virtual photon of 3 GeV² interacts with the down quark the proton more likely falls apart than in the case of the up quark

Implications for Collider Experiments

Uncertainty induced by nuclear corrections extends to rather small scales \sqrt{s} , and grows quickly above 5–10% as \sqrt{s} exceeds 1 TeV.

Larger rapidity = more sensitive to large-x region for a given mass. For example, nuclear uncertainty becomes relevant at rapidity larger than 2 for W production at the Tevatron.

The gg, gd, du luminosities impact the main channel(s) for Higgs production, jet production, "standard candle" cross section for W⁻ production,

Nucleon Structure: the 3D World

Generalized Parton Distributions: form factors of only those quarks in the nucleon carrying a certain fixed momentum fraction x

Deeply Virtual Compton Scattering (DVCS):

 \rightarrow GPDs -- amplitude for "kicking out" a parton of the fast moving nucleon by the virtual photon and "putting it back" with a different momentum after radiating a real photon

 \rightarrow 4 GPDs defined through matrix elements of quark and gluon operators:

 $H(x,\xi,t) \quad E(x,\xi,t) \quad \widetilde{H}(x,\xi,t) \quad \widetilde{E}(x,\xi,t)$

→ Pauli, Dirac form factors lowest x-moments of H and E: $F_1 = \int dx H(x,\xi,t) F_2 = \int dx E(x,\xi,t)$

→ In the limit of $\mathbf{p} = \mathbf{p}'$ H become the usual PDF: $H_q(x, \xi = 0, t = 0) = q(x) = \frac{1}{2} (\mathbf{q} \uparrow (\mathbf{x}) + \mathbf{q} \downarrow (\mathbf{x}))$ $\widetilde{H}_q(x, \xi = 0, t = 0) = \Delta q(x) = \frac{1}{2} (\mathbf{q} \uparrow (\mathbf{x}) - \mathbf{q} \downarrow (\mathbf{x}))$

TMDs Accessible through Semi-Inclusive Physics

Collinear Parton Distribution Functions

In DIS nucleon structure is described by three collinear PDFs:

Momentum distribution – $q(x, Q^2)$

Helicity distribution $- \Delta q(x, Q^2)$

Transversity distribution - $h(x, Q^2)$

• The helicity dependent parton distributions ("spin-dependent PDFs") describe the number density of partons with given longitudinal momentum x and given polarization in a hadron polarized longitudinally with respect to its motion.

• The transverse momentum distributions ("TMDs") describe the number density of partons with given transverse momentum x in a hadron. *We'll come back to this....*

Features of 3D Distributions/TMDs

Science

 $f^{a}(x, k_{T}^{2}; Q^{2})$

 $\sigma = \sum_{q} e_q^2 f(x) \otimes D(z)$ $f^a(x, k_T^2; Q^2)$

- transverse position and momentum of partons are correlated with the spin orientations of the parent hadron and the spin of the parton itself
- transverse position and momentum of partons depend on their flavor
- transverse position and momentum of partons are correlated with their longitudinal momentum
- spin and momentum of struck quarks are correlated with remnant
- quark-gluon interaction play a crucial role in kinematical distributions of final state hadrons, both in semi-inclusive and exclusive processes

Polarized Parton Distributions

• Measurement of Γ_1^{p} , Γ_1^{n}

ENERGY Office of Science

- Constraint based on neutron and hyperon beta decay lifetimes.
- Assumption of SU(3) flavor symmetry
- Global fit with DGLAP Q² evolution

SJSA

$$ightarrow \Delta\Sigmapprox 0.25$$

arX:1209.2803

Only small fraction of the proton spin is carried by the quarks & antiquarks!!

Gluon Helicity

