Higgs Boson: Experimental Review

B.Mellado

University of the Witwatersrand

2017 CTEQ School, University of Pittsburgh 26-27/07/2017

Outline

- □ The SM and the Higgs bsoon
- Habemus Novum Boson
- Production mechanisms and decay
- 🗆 Mass
- □ Signal/coupling strength
- □ Spin-CP quantum numbers
- □ Fiducial cross-sections

S. Dawson The Standard Model of Physics

Gauge symmetry forbids gauge boson masses: Spontaneous EW symmetry breaking and the Higgs Boson come to the rescue The Higgs boson provides for explanation for the mass of quarks, leptons and weak bosons. It is a cornerstone of the theory of fundamental interactions.

Spontaneous Symmetry Breaking

Potential for a complex scalar field

6

$SU(2)_L \times U(1)_Y$ gauge symmetry $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 - i\phi_2 \\ \phi_3 - i\phi_4 \end{pmatrix}$ $V(\phi) = \mu^2 \phi^{\dagger} \phi - \lambda \left(\phi^{\dagger} \phi\right)^2$

In the standard model there is a physical state, a Higgs boson with well defined couplings to weak bosons, fermions and self interactions

Gauge	Self-interaction	Fermion
$HW^+_{\mu}W^{\nu}: (-ig_{\mu u})2rac{m^2_W}{2^{ u}}$	$HHH:(i)3\frac{m_{H}^{2}}{\nu_{o}}$	$Har{f}f:(i)rac{m_f}{ u}$
$HZ_{\mu}Z_{ u}:(-ig_{\mu u})2rac{m_Z^2}{ u}$	$HHHH:(i)3rac{m_{H}^{2}}{ u^{2}}$	
$HHW^+_{\mu}W^{\nu}: (-ig_{\mu\nu})2\frac{m^2_W}{\kappa^2}$		
$_{-}HHZ_{\mu}Z_{ u}:(-ig_{\mu u})2rac{m_{Z}^{2}}{ u^{2}}$		

The exploration of the coupling known particles plays now a pivotal role in understanding the nature of the scalar boson observed experimentally. New physics can be hidden in these couplings.

Habemus novum Boson Phys.Lett. B716 (2012) 1-29

On July 4th reported 5σ. With the addition of WW a 6σ effect is reached and reported in the final paper.

In this presentation we review progress since discovery with Run I 10

Higgs boson Decays

Loop-induced decays

Higgs production at Hadron Colliders

Gluongluon fusion Vector Boson Fusion

Associated Production

14

Production	Cross section [pb]		Order of
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
<i>gg</i> F	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD) + NLO(EW)
VBF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW) + APPROX. NNLO(QCD)
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD) + NLO(EW)
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD) + NLO(EW)
[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
Total	17.4 ± 1.6	22.3 ± 2.0	

arXiv:1503.06056v1, C. Anastasiou et al. First Complete N3LO calculation for the total gluon-gluon fusion cross-section showing small N3LO/NNLO corrections

arXiv:1504.07922v1, R. Boughezal et al. First complete calculation of ggF+1j at NNLO, showing strong reduction of scale variation

The Main Channels

Channels used in the measurement of properties

Higgs decay to yy

YY Backgrounds

Reducible yj and jj Backgrounds

Diphoton Invariant Mass

- Primary vertex reconstruction :
 - Photon calorimeter pointing
 - Use conversion tracks when available
- Energy scale calibration from Z to electrons applied
- Crystal Ball + Gaussian model with narrow widths (of the core of the distribution) :

Background Composition

Composition	γγ	γj	jj	Drell-Yan
Events	$16000 \pm 200 \pm 1100$	$5230 \pm 130 \pm 880$	$1130 \pm 50 \pm 600$	$165\pm2\pm8$
Relative fraction	$(71 \pm 5)\%$	$(23 \pm 4)\%$	$(5\pm 3)\%$	$(0.7 \pm 0.1)\%$

 $H \to \gamma \gamma$

Di-photon Invariant mass distribution; analysis for data, showing weighted data points with errors, and the result of the simultaneous fit to all categories. The fitted signal plus background is shown, along with the background-only component of this fit.

Higgs decay to Z⁰Z⁰

Irreducible Z⁰Z⁰ backgrounds Reducible 41 backgrounds

Mass resolution plots after the application of a mass constraint. Gain in resolution ~15-20%

Invariant mass distribution of the second lepton pair: $\mu\mu$ and *ee.* The kinematic selections of the analysis have been applied. Isolation requirements have been applied on the first lepton pair. No charge requirements were applied to the second lepton pair.

30

Distribution of the four-lepton invariant mass for the selected candidates in the m₄₁ range 80--170 GeV **Distribution of the MVA** (**BDT**) ZZ* output, versus m_{4l} ; for the selected candidates in the m_{4l} range of 110--140 GeV

Higgs decay to W⁺W⁻

Two leptons + neutrinos No mass peak Event counting experiment

W⁺W⁻ backgrounds

The reconstruction of missing energy is real is a crucial element to the search. Shown are the METRel distribution of the neutrino momenta in the presence of two charged leptons Overall, good control of the data $E_{\mathrm{T,rel}}^{\mathrm{miss}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta \phi \geq \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin \Delta \phi & \text{if } \Delta \phi < \pi/2 \end{cases}$

A real challenge this time around!

32

Flow chart for Back. Extraction

Complete propagation of systematic errors

 $H \to WW^* \to \ell \nu \ell \nu$

Candidate for VBF production

Require two isolated leptons and large MET. Reconstruct transverse mass. Categorization in jet multiplicity. 35

Mass measurement

The Higgs boson mass is a fundamental parameter of nature that is not predicted by the theory

Sensitivity to Coupling Strength

Preprint including ATLAS/CMS combination available at arXiv:1606.02266v1

Signal Strengths

$$\mu_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \quad \text{and} \quad \mu^{f} = \frac{B^{f}}{(B^{f})_{\text{SM}}}$$
$$\mu_{i}^{f} = \frac{\sigma_{i} \cdot B^{f}}{(\sigma_{i})_{\text{SM}} \cdot (B^{f})_{\text{SM}}} = \mu_{i} \cdot \mu^{f}$$

Coupling Modifiers

$$\sigma_i \cdot \mathbf{B}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H} \quad \kappa_j^2 = \frac{\Gamma^j}{\Gamma_{SM}^j}$$

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t–b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
σ (VBF)	-	-		$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	_	-		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	_	-		κ_Z^2
$\sigma(gg \rightarrow ZH)$	\checkmark	t–Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	-		κ_t^2
$\sigma(gb \rightarrow tHW)$	-	t-W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	-	t-W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_w^2
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{\tau\tau}$	_	_		κ_{τ}^2
Γ^{bb}	_	_		κ_{b}^{2}
$\Gamma^{\mu\mu}$	_	-		κ_{μ}^2
Total width ($B_{BSM} =$	0)			
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_a^2 +$
Γ_H	\checkmark	_	κ_{H}^{2}	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_{\mu}^2$

Channel	References individual publ	for ications	Signal str from r	rength $[\mu]$ esults in this	Signal significance $[\sigma]$ paper (Section 5.2)		
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	
$H ightarrow \gamma \gamma$	[<mark>91</mark>]	[<mark>92</mark>]	$1.14_{-0.25}^{+0.27}$	$1.11 \substack{+0.25 \\ -0.23}$	5.0	5.6	
			$\begin{pmatrix} +0.26 \\ -0.24 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.21 \end{pmatrix}$	(4.6)	(5.1)	
$H \rightarrow ZZ$	[93]	[<mark>94</mark>]	$1.52 \substack{+0.40 \\ -0.34}$	$1.04 \substack{+0.32 \\ -0.26}$	7.6	7.0	
			$\begin{pmatrix} +0.32 \\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.30 \\ -0.25 \end{pmatrix}$	(5.6)	(6.8)	
$H \rightarrow WW$	[95,96]	[<mark>97</mark>]	$1.22 \substack{+0.23 \\ -0.21}$	0.90 +0.23 -0.21	6.8	4.8	
			$\begin{pmatrix} +0.21 \\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$	(5.8)	(5.6)	
$H \rightarrow \tau \tau$	[<mark>98</mark>]	[<mark>99</mark>]	$1.41 \substack{+0.40\\-0.36}$	0.88 +0.30 -0.28	4.4	3.4	
			$\begin{pmatrix} +0.37 \\ -0.33 \end{pmatrix}$	$\begin{pmatrix} +0.31 \\ -0.29 \end{pmatrix}$	(3.3)	(3.7)	
$H \rightarrow bb$	[100]	[101]	0.62 +0.37 -0.37	0.81 +0.45	1.7	2.0	
			$\begin{pmatrix} +0.39 \\ -0.37 \end{pmatrix}$	$\begin{pmatrix} +0.45 \\ -0.43 \end{pmatrix}$	(2.7)	(2.5)	
$H \rightarrow \mu \mu$	[102]	[103]	$-0.6^{+3.6}_{-3.6}$	0.9 +3.6			
			$\binom{+3.6}{-3.6}$	$\binom{+3.3}{-3.2}$			
ttH production	[77, 104, 105]	[107]	1.9 +0.8 -0.7	2.9 +1.0	2.7	3.6	
			$\binom{+0.7}{-0.7}$	$\binom{+0.9}{-0.8}$	(1.6)	(1.3)	

Produ	iction	Decay mode														
proce	SS	$H \rightarrow$	γγ [fb]	γ [fb] $H \rightarrow ZZ$ [fb]				$H \rightarrow WW$ [pb]			$H \rightarrow \tau \tau$ [fb]			$H \rightarrow$	bb [pb]	
		Best fit value	Unce: Stat	rtainty Syst	Best fit value	Uncer Stat	rtainty Syst	Best fit value	Uncer Stat	rtainty Syst	Best fit value	Uncer Stat	rtainty Syst	Best fit value	Uncer Stat	rtainty Syst
ggF	Measured	$\begin{array}{c} 48.0 \begin{array}{c} +10.0 \\ -9.7 \\ \left(\begin{array}{c} +9.7 \\ -9.5 \end{array} \right) \end{array}$	$^{+9.4}_{-9.4}$ $\binom{+9.4}{-9.4}$	$^{+3.2}_{-2.3}$ $\binom{+2.5}{-1.6}$	$580 ^{+170}_{-160} \\ \left(^{+150}_{-130} \right)$	$^{+170}_{-160}$ $(^{+140}_{-130})$	$^{+40}_{-40}$ $\binom{+30}{-20}$	$3.5^{+0.7}_{-0.7}$ $\begin{pmatrix} +0.7\\ -0.7 \end{pmatrix}$	$^{+0.5}_{-0.5}$ $\binom{+0.5}{-0.5}$	$^{+0.5}_{-0.5}$ $(^{+0.5}_{-0.5})$	1300 ⁺⁷⁰⁰ -700 (+700) (-700)	$^{+400}_{-400}$ $(^{+400}_{-400})$	+500 -500 (+500 -500)		_	
	Predicted	44 ±5			510 ± 60			4.1 ±0.5			1210 ±140			11.0 ± 1.2		
	Ratio	$1.10 \substack{+0.23 \\ -0.22}$	+0.22 -0.21	+0.07 -0.05	$1.13 \substack{+0.34 \\ -0.31}$	+0.33 -0.30	+0.09 -0.07	0.84 +0.17 -0.17	+0.12 -0.12	+0.12 -0.11	1.0 +0.6	+0.4 -0.4	+0.4 -0.4		-	
VBF	Measured	$\begin{array}{c}4.6 \begin{array}{c} ^{+1.9}_{-1.8} \\ \left(^{+1.8}_{-1.6} \right)\end{array}$	$^{+1.8}_{-1.7}$ $(^{+1.7}_{-1.6})$	$^{+0.6}_{-0.5}$ $\begin{pmatrix}+0.5\\-0.4\end{pmatrix}$	3^{+46}_{-26} $\binom{+60}{-39}$	$^{+46}_{-25}$ $(^{+60}_{-39})$	$^{+7}_{-7}$ $(^{+8}_{-5})$	$ \begin{array}{c} 0.39 {}^{+0.14}_{-0.13} \\ \left({}^{+0.15}_{-0.13} \right) \end{array} $	$^{+0.13}_{-0.12}$ $\begin{pmatrix} +0.13\\ -0.12 \end{pmatrix}$	+0.07 -0.05 (+0.07 -0.06)	$125^{+39}_{-37} \\ \begin{pmatrix} +39 \\ -37 \end{pmatrix}$	$^{+34}_{-32}$ $\binom{+34}{-32}$	$^{+19}_{-18}$ $(^{+19}_{-18})$		-	
	Predicted	3.60 ± 0.20			42.2 ±2.0			0.341 ±0.017			100 ±6			0.91 ±0.04		
	Ratio	$1.3 \substack{+0.5 \\ -0.5}$	+0.5 -0.5	+0.2 -0.1	0.1 +1.1 -0.6	+1.1 -0.6	+0.2 -0.2	$1.2^{+0.4}_{-0.4}$	+0.4 -0.3	+0.2 -0.2	1.3 +0.4	+0.3 -0.3	+0.2 -0.2		-	
WH	Measured	$0.7^{+2.1}_{-1.9}$	$^{+2.1}_{-1.8}$	$^{+0.3}_{-0.3}$		-		0.24 + 0.18 - 0.16 (+0.16)	+0.15 -0.14 (+0.14)	+0.10 -0.08 (+0.08)	-64^{+64}_{-61}	+55 -50 (+60)	+32 -34 (+30)	$0.42^{+0.21}_{-0.20}$	+0.17 -0.16 (+0.18)	$^{+0.12}_{-0.11}$
	Predicted	(-1.8) 1.60 ±0.09	(-1.8)	(-0.1)	18.8 ±0.9			(-0.14) 0.152 ±0.007	(-0.13)	(-0.07)	(-64) 44.3 ±2.8	(-54)	(-32)	(-0.21) 0.404 ±0.017	(-0.17)	(-0.11)
	Ratio	0.5 +1.3	+1.3	$^{+0.2}_{-0.2}$		-		1.6 +1.2	+1.0	+0.6	$-1.4^{+1.4}_{-1.4}$	+1.2	+0.7	1.0 +0.5	+0.4	+0.3
ZH	Measured	$\begin{array}{c} 0.5 \begin{array}{c} ^{+2.9}_{-2.4} \\ \left(^{+2.3}_{-1.9} \right) \end{array}$	$^{+2.8}_{-2.3}$ $(^{+2.3}_{-1.9})$	$^{+0.5}_{-0.2}$ $\begin{pmatrix}+0.1\\-0.1\end{pmatrix}$		-		$\begin{array}{c} 0.53 \begin{array}{c} ^{+0.23}_{-0.20} \\ \left(\begin{array}{c} ^{+0.17} \\ ^{-0.14} \end{array} \right) \end{array}$	$^{+0.21}_{-0.19}$ $\begin{pmatrix}+0.16\\-0.14\end{pmatrix}$	+0.10 -0.07 (+0.05 -0.04)	58 ⁺⁵⁶ _47 (+49 _40)	+52 -44 (+46 -38)	$^{+20}_{-16}$ $\binom{+16}{-12}$	$\begin{array}{c} 0.08 \begin{array}{c} ^{+0.09}_{-0.09} \\ \left(\substack{+0.10 \\ -0.09} \right) \end{array}$	$^{+0.08}_{-0.08}$ $(^{+0.09}_{-0.08})$	$^{+0.04}_{-0.04}$ $\begin{pmatrix}+0.05\\-0.04\end{pmatrix}$
	Predicted	0.94 ± 0.06			11.1 ±0.6		0.089 ± 0.005			26.1 ± 1.8			0.238 ±0.012	2		
	Ratio	0.5 +3.0	+3.0 -2.5	+0.5 -0.2		-		5.9 +2.6 -2.2	+2.3 -2.1	+1.1 -0.8	2.2 +2.2 -1.8	+2.0	+0.8 -0.6	0.4 +0.4	+0.3 -0.3	+0.2 -0.2
ttH	Measured	0.64 +0.48 -0.38	+0.48 -0.38	+0.07 -0.04		-		0.14 +0.05	+0.04 -0.04	+0.03	$-15 ^{+30}_{-26}$	+26	+15 -15	0.08 +0.07 -0.07	+0.04	+0.06
		$\binom{+0.45}{-0.34}$	$\binom{+0.44}{-0.33}$	$\begin{pmatrix} +0.10 \\ -0.05 \end{pmatrix}$		-		$\begin{pmatrix} +0.04 \\ -0.04 \end{pmatrix}$	$\binom{+0.04}{-0.04}$	$\binom{+0.02}{-0.02}$	$\binom{+31}{-26}$	$\binom{+26}{-22}$	$\binom{+16}{-13}$	(+0.07 -0.06)	$\binom{+0.04}{-0.04}$	$\binom{+0.06}{-0.05}$
	Predicted	0.294 ±0.035	5		3.4 ± 0.4			0.0279 ±0.0032	2		8.1 ±1.0			0.074 ±0.008	}	
	Ratio	2.2 + 1.6 - 1.3	+1.6 -1.3	+0.2 -0.1		-		5.0 +1.8 -1.7	+1.5 -1.5	+1.0 -0.9	-1.9 +3.7 -3.3	+3.2 -2.7	+1.9 -1.8	1.1 +1.0 -1.0	+0.5 -0.5	+0.8 -0.8

Introducing ratios. Has some advantages such as cancellation of experimental and some theoretical uncertainties, such as the lack of knowledge of total width and others

σ and B ratio parameterisation	Coupling modifier ratio parameterisation
$\sigma(gg \rightarrow H \rightarrow ZZ)$	$\kappa_{gZ} = \kappa_g \cdot \kappa_Z / \kappa_H$
$\sigma_{ m VBF}/\sigma_{gg m F}$	
$\sigma_{WH}/\sigma_{gg{ m F}}$	
$\sigma_{ZH}/\sigma_{gg{ m F}}$	$\lambda_{Zg} = \kappa_Z / \kappa_g$
$\sigma_{ttH}/\sigma_{gg{ m F}}$	$\lambda_{tg} = \kappa_t / \kappa_g$
$\mathbf{B}^{WW}/\mathbf{B}^{ZZ}$	$\lambda_{WZ} = \kappa_W / \kappa_Z$
$\mathbf{B}^{\gamma\gamma}/\mathbf{B}^{ZZ}$	$\lambda_{\gamma Z} = \kappa_{\gamma} / \kappa_Z$
$\mathbf{B}^{ au au}/\mathbf{B}^{ZZ}$	$\lambda_{ au Z} = \kappa_{ au} / \kappa_Z$
$\mathbf{B}^{bb}/\mathbf{B}^{ZZ}$	$\lambda_{bZ} = \kappa_b / \kappa_Z$

Parameter	SM prediction	Best fit Uncertainty		Best fit Uncertainty			Best fit U		Uncertainty		
		value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	
		ATLAS+CMS			A	TLAS		CMS			
$\sigma(gg \rightarrow H \rightarrow ZZ)$ [pb]	0.51 ±0.06	$\begin{array}{c} 0.59 {}^{+0.11}_{-0.10} \\ \left({}^{+0.11}_{-0.10} \right) \end{array}$	$^{+0.11}_{-0.10}$ $\begin{pmatrix} +0.11 \\ -0.09 \end{pmatrix}$	$^{+0.02}_{-0.02}$ $\binom{+0.03}{-0.02}$	$\begin{array}{c} 0.77 {}^{+0.19}_{-0.17} \\ \left({}^{+0.16}_{-0.14} \right) \end{array}$	$^{+0.19}_{-0.16}$ $\binom{+0.16}{-0.13}$	$^{+0.05}_{-0.03}$ $\binom{+0.03}{-0.02}$	$ \begin{array}{c} 0.44 {}^{+0.14}_{-0.12} \\ \left({}^{+0.15}_{-0.13} \right) \end{array} $	$^{+0.13}_{-0.11}$ $\begin{pmatrix} +0.15\\ -0.13 \end{pmatrix}$	$^{+0.05}_{-0.03}$ $\begin{pmatrix} +0.04 \\ -0.03 \end{pmatrix}$	
$\sigma_{ m VBF}/\sigma_{gg m F}$	0.082 ±0.009	$ \begin{array}{c} 0.109 {}^{+0.034}_{-0.027} \\ \left({}^{+0.029}_{-0.024} \right) \end{array} $	$^{+0.029}_{-0.024}$ $\binom{+0.024}{-0.020}$	$^{+0.018}_{-0.013}$ $\begin{pmatrix} +0.016\\ -0.012 \end{pmatrix}$	$\begin{array}{c} 0.079 {}^{+0.035}_{-0.026} \\ \left({}^{+0.042}_{-0.031} \right) \end{array}$	$^{+0.030}_{-0.023}$ $\begin{pmatrix} +0.036\\ -0.028 \end{pmatrix}$	$^{+0.019}_{-0.012}$ $\binom{+0.022}{-0.014}$	$ \begin{smallmatrix} 0.138 \\ +0.073 \\ -0.051 \\ \begin{pmatrix} +0.043 \\ -0.033 \end{pmatrix} $	$^{+0.061}_{-0.046}$ $\begin{pmatrix} +0.037\\ -0.029 \end{pmatrix}$	$^{+0.039}_{-0.023}$ $\begin{pmatrix} +0.023\\ -0.015 \end{pmatrix}$	
$\sigma_{\scriptscriptstyle WH}/\sigma_{gg m F}$	0.037 ±0.004	$0.031^{+0.028}_{-0.026}\\ \left(\begin{smallmatrix}+0.021\\-0.017\end{smallmatrix}\right)$	$^{+0.024}_{-0.022}$ $\binom{+0.019}{-0.015}$	$^{+0.015}_{-0.014}$ $\begin{pmatrix} +0.011\\ -0.007 \end{pmatrix}$	$\begin{array}{c} 0.054 \begin{array}{c} ^{+0.036}_{-0.026} \\ \left(\begin{array}{c} ^{+0.033}_{-0.022} \end{array} \right) \end{array}$	$^{+0.031}_{-0.023}$ $\begin{pmatrix} +0.029\\ -0.020 \end{pmatrix}$	$^{+0.020}_{-0.013}$ $\binom{+0.015}{-0.009}$	$\begin{array}{c} 0.005 \begin{array}{c} ^{+0.044}_{-0.037} \\ \left(\begin{array}{c} ^{+0.032}_{-0.022} \end{array} \right) \end{array}$	$^{+0.037}_{-0.028}$ $\begin{pmatrix} +0.027\\ -0.020 \end{pmatrix}$	$^{+0.023}_{-0.024}$ $\begin{pmatrix} +0.017\\ -0.010 \end{pmatrix}$	
$\sigma_{ZH}/\sigma_{gg\mathrm{F}}$	0.0216 ±0.0024	$\begin{array}{c} 0.066 {}^{+0.039}_{-0.031} \\ \left({}^{+0.016}_{-0.011} \right) \end{array}$	$^{+0.032}_{-0.025}$ $\binom{+0.014}{-0.010}$	$^{+0.023}_{-0.018}$ $\begin{pmatrix} +0.009\\ -0.004 \end{pmatrix}$	$\begin{array}{c} 0.013 \begin{array}{c} {}^{+0.028}_{-0.014} \\ ({}^{+0.027}_{-0.014}) \end{array}$	$^{+0.021}_{-0.012}$ $\begin{pmatrix} +0.023\\ -0.013 \end{pmatrix}$	$^{+0.018}_{-0.007} \\ \left(^{+0.014}_{-0.005} \right)$	$ \begin{smallmatrix} 0.123 \\ \scriptstyle -0.053 \\ \scriptstyle \left(\begin{smallmatrix} +0.076 \\ \scriptstyle -0.053 \\ \scriptstyle \left(\begin{smallmatrix} +0.024 \\ \scriptstyle -0.013 \end{smallmatrix} \right) \end{smallmatrix} \right) $	$^{+0.063}_{-0.046}$ $\begin{pmatrix} +0.020\\ -0.012 \end{pmatrix}$	$^{+0.044}_{-0.026}$ $\binom{+0.014}{-0.006}$	
$\sigma_{ttH}/\sigma_{ggF}$	0.0067 ±0.0010	$0.022 \substack{+0.007 \\ -0.006 \\ \left(\substack{+0.004 \\ -0.004 \end{array}\right)}$	$^{+0.005}_{-0.005}$ $\binom{+0.003}{-0.003}$	$^{+0.004}_{-0.003}$ $\begin{pmatrix} +0.003\\ -0.002 \end{pmatrix}$	$\begin{array}{c} 0.013 \begin{array}{c} ^{+0.007}_{-0.005} \\ \left(\begin{array}{c} ^{+0.006}_{-0.004} \end{array} \right) \end{array}$	$^{+0.005}_{-0.004}$ $\binom{+0.005}{-0.004}$	$^{+0.004}_{-0.003}$ $\begin{pmatrix} +0.004\\ -0.003 \end{pmatrix}$	$0.034 \substack{+0.016 \\ -0.012} \\ \begin{pmatrix}+0.007 \\ -0.005\end{pmatrix}$	$^{+0.012}_{-0.010}$ $\begin{pmatrix} +0.005\\ -0.004 \end{pmatrix}$	$^{+0.010}_{-0.006}$ $\begin{pmatrix} +0.004 \\ -0.004 \end{pmatrix}$	
B^{WW}/B^{ZZ}	8.09 ± < 0.01	$\begin{array}{c} 6.7 {}^{+1.6}_{-1.3} \\ \left({}^{+2.2}_{-1.7} \right) \end{array}$	$^{+1.5}_{-1.2}$ $(^{+2.0}_{-1.6})$	$^{+0.6}_{-0.5}$ $\binom{+0.9}{-0.7}$	$\begin{array}{c} 6.5 {}^{+2.1}_{-1.6} \\ \left({}^{+3.5}_{-2.4} \right) \end{array}$	$^{+2.0}_{-1.4}$ $\binom{+3.3}{-2.2}$	$^{+0.8}_{-0.6}$ $\binom{+1.2}{-0.9}$	$7.1^{+2.9}_{-2.1} \\ \begin{pmatrix} +3.2 \\ -2.2 \end{pmatrix}$	$^{+2.6}_{-1.8}$ $(^{+2.9}_{-2.0})$	$^{+1.3}_{-0.9}$ $\binom{+1.4}{-1.0}$	
$B^{\gamma\gamma}/B^{ZZ}$	0.0854 ±0.0010	$\begin{array}{c} 0.069 {}^{+0.018}_{-0.014} \\ \left({}^{+0.025}_{-0.019} \right) \end{array}$	$^{+0.018}_{-0.014}$ $\begin{pmatrix} +0.024\\ -0.019 \end{pmatrix}$	$^{+0.004}_{-0.003}$ $\begin{pmatrix} +0.006\\ -0.004 \end{pmatrix}$	$\begin{array}{c} 0.062 {}^{+0.024}_{-0.018} \\ \left({}^{+0.040}_{-0.027} \right) \end{array}$	$^{+0.023}_{-0.017}$ $\begin{pmatrix} +0.039\\ -0.027 \end{pmatrix}$	$^{+0.007}_{-0.005}$ $\binom{+0.010}{-0.006}$	$\begin{array}{c} 0.079 {}^{+0.034}_{-0.023} \\ \left({}^{+0.035}_{-0.025} \right) \end{array}$	$^{+0.032}_{-0.023}$ $\begin{pmatrix} +0.034\\ -0.024 \end{pmatrix}$	$^{+0.010}_{-0.006}$ $\binom{+0.008}{-0.005}$	
$B^{\tau\tau}/B^{ZZ}$	2.36 ±0.05	${}^{1.8 {}^{+0.6}_{-0.5}}_{\left({}^{+0.9}_{-0.7}\right)}$	$^{+0.5}_{-0.4}$ $\binom{+0.8}{-0.6}$	$^{+0.3}_{-0.2}$ $\binom{+0.5}{-0.3}$	$2.2^{+1.1}_{-0.7} \\ \left(^{+1.5}_{-1.0} \right)$	$^{+0.9}_{-0.6}$ $\binom{+1.3}{-0.9}$	$^{+0.6}_{-0.4}$ $\binom{+0.8}{-0.5}$	$1.6^{+0.9}_{-0.6} \\ \binom{+1.2}{-0.9}$	+0.8 -0.5 (+1.0 -0.7)	$^{+0.5}_{-0.3}$ $\binom{+0.7}{-0.4}$	
$\mathbf{B}^{bb}/\mathbf{B}^{ZZ}$	21.5 ±1.0	$\substack{4.2 {}^{+4.4}_{-2.6} \\ \left({}^{+16.8}_{-9.0}\right)}$	$^{+2.8}_{-2.0}$ $\binom{+13.9}{-7.9}$	$^{+3.4}_{-1.6}$ $\binom{+9.5}{-4.4}$	$9.6^{+10.1}_{-5.7} \\ \begin{pmatrix} +29.3 \\ -11.8 \end{pmatrix}$	$^{+7.4}_{-4.4}$ $\binom{+24.2}{-10.5}$	$^{+6.9}_{-3.6}$ $\binom{+16.6}{-5.3}$	$3.7^{+4.1}_{-2.4} \\ \left(^{+29.4}_{-11.9} \right)$	$^{+3.1}_{-2.0}$ $\binom{+23.4}{-10.4}$	$^{+2.7}_{-1.4}$ $\binom{+17.8}{-5.9}$	

Spin/CP Quantum numbers: Exploration in Decay

Data show compatibility with the SM 0⁺ hypothesis while other alternative hypotheses considered are excluded at a confidence levels above 95%

ATLAS

 $H \rightarrow \gamma \gamma$

Phys.Lett. B726 (2013) 120-144

Data

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right) \end{split}$$

CMS-PAS-HIG-14-014

Spin-1 $f_{b2} = \frac{|b_2|^2 \sigma_2}{|b_1|^2 \sigma_1 + |b_2|^2 \sigma_2}$

 $A(X_{J=1} \to V_1 V_2) \sim b_1 \left[\left(\epsilon_{V_1}^* q \right) \left(\epsilon_{V_2}^* \epsilon_X \right) + \left(\epsilon_{V_2}^* q \right) \left(\epsilon_{V_1}^* \epsilon_X \right) \right] + b_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$

Spin-2

$$\begin{split} &A(X_{J=2} \to V_{1}V_{2}) \sim \Lambda^{-1} \left[2c_{1}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu\beta} \\ &+ c_{3}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + c_{4}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \\ &+ m_{V}^{2} \left(2c_{5}t_{\mu\nu}\epsilon^{*\mu}_{V_{1}}\epsilon^{*\nu}_{V_{2}} + 2c_{6}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon^{*\nu}_{V_{1}}\epsilon^{*\alpha}_{V_{2}} - \epsilon^{*\alpha}_{V_{1}}\epsilon^{*\nu}_{V_{2}}\right) + c_{7}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{V_{1}}\epsilon^{*}_{V_{2}} \right) \\ &+ c_{8}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + c_{9}t^{\mu\alpha}\tilde{q}_{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{V_{1}}\epsilon^{*\rho}_{V_{2}}q^{\sigma} \\ &+ \frac{c_{10}t^{\mu\alpha}\tilde{q}_{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon^{*\nu}_{V_{1}}(q\epsilon^{*}_{V_{2}}) + \epsilon^{*\nu}_{V_{2}}(q\epsilon^{*}_{V_{1}})\right) \right] \,, \end{split}$$

Probabilities build with LO ME from MCFM, MadGraph and FeynRules

Interference-related probabilities used in the Spin-0 study

$$\begin{split} \mathcal{P}_{\rm SM} &= \mathcal{P}_{\rm SM}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) \times \mathcal{P}_{\rm sig}^{\rm mass}(m_{4\ell} | m_H) \\ \mathcal{P}_{\rm J^{\rm p}} &= \mathcal{P}_{\rm J^{\rm p}}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) \times \mathcal{P}_{\rm sig}^{\rm mass}(m_{4\ell} | m_H) \\ \mathcal{P}_{\rm interf}^{\rm kin} &= \left(\mathcal{P}_{\rm SM+J^{\rm p}}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) - g_{J^{\rm p}} \mathcal{P}_{\rm J^{\rm p}}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) - \mathcal{P}_{\rm SM}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell})\right) \\ \mathcal{P}_{\rm interf\perp}^{\rm kin} &= \left(\mathcal{P}_{\rm SM+J^{\rm p}\perp}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) - g_{J^{\rm p}} \mathcal{P}_{J^{\rm p}}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) - \mathcal{P}_{\rm SM}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell})\right) \\ \mathcal{P}_{q\bar{q}ZZ} &= \mathcal{P}_{q\bar{q}ZZ}^{\rm kin}(\vec{\Omega}, m_1, m_2 | m_{4\ell}) \times \mathcal{P}_{q\bar{q}ZZ}^{\rm mass}(m_{4\ell}) , \\ \mathcal{D}_{\rm bkg} &= \frac{\mathcal{P}_{\rm SM}}{\mathcal{P}_{\rm SM} + c \times \mathcal{P}_{\rm bkg}} = \left[1 + c(m_{4\ell}) \times \frac{\mathcal{P}_{\rm bkg}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{\rm bkg}^{\rm mass}(m_{4\ell})}{\mathcal{P}_{\rm SM}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{\rm sig}^{\rm mass}(m_{4\ell} | m_H)}\right]^{-1} \\ \mathcal{D}_{\rm lpg} &= \frac{\mathcal{P}_{\rm SM}}{\mathcal{P}_{\rm SM} + c_{J^{\rm p}} \times \mathcal{P}_{J^{\rm p}}^{\rm kin}} = \left[1 + c_{J^{\rm p}} \times \frac{\mathcal{P}_{\rm bkg}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\rm SM}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell})}\right]^{-1} \\ \mathcal{D}_{\rm Interf} &= \frac{\left(\mathcal{P}_{\rm SM+J^{\rm p}} - g_{J^{\rm p}} \mathcal{P}_{J^{\rm p}}^{\rm kin} - \mathcal{P}_{\rm SM}^{\rm kin}\right)}{\mathcal{P}_{\rm SM}^{\rm kin} + c_{J^{\rm p}} \times \mathcal{P}_{J^{\rm p}}^{\rm kin}} \\ \end{array}$$

Exclusion of Spin-1 hypotheses

J^P	J^P	Expected				$f(J^P)$ CL=95%	$f(J^P)$
model	$\operatorname{production}$	$(\mu {=} 1)$	Obs. 0^+	Obs. J^P	CL_{s}	Obs(Exp)	Best-Fit
1-	any	$2.9\sigma(2.7\sigma)$	-2.0σ	$>4.5\sigma$	< 0.01 %	0.37(0.79)	$0.00\substack{+0.12 \\ -0.00}$
$f_{b2} = 0.2$	any	$2.7\sigma(2.5\sigma)$	-2.2σ	$>4.5\sigma$	${<}0.01~\%$	0.38(0.82)	$0.00\substack{+0.12 \\ -0.00}$
$f_{b2} = 0.4$	any	$2.5\sigma(2.4\sigma)$	-2.3σ	$> 4.5\sigma$	${<}0.01~\%$	0.39(0.84)	$0.00\substack{+0.13 \\ -0.00}$
$f_{b2} = 0.6$	any	$2.5\sigma(2.3\sigma)$	-2.4σ	$>4.5\sigma$	${<}0.01~\%$	0.39(0.86)	$0.00\substack{+0.13 \\ -0.00}$
$f_{b2} = 0.8$	any	$2.4\sigma(2.3\sigma)$	-2.3σ	$>4.5\sigma$	${<}0.01~\%$	0.40(0.86)	$0.00\substack{+0.13 \\ -0.00}$
1^{+}	any	$2.5\sigma(2.3\sigma)$	-2.3σ	$>4.5\sigma$	${<}0.01~\%$	0.41(0.85)	$0.00\substack{+0.13 \\ -0.00}$
1-	$q\bar{q} \to X$	$2.9\sigma(2.8\sigma)$	-1.4σ	$>4.5\sigma$	< 0.01 %	0.46(0.78)	$0.00\substack{+0.16 \\ -0.00}$
$f_{b2} = 0.2$	$q\bar{q} o X$	$2.6\sigma(2.6\sigma)$	-1.4σ	$+4.6\sigma$	${<}0.01~\%$	0.49(0.81)	$0.00\substack{+0.17 \\ -0.00}$
$f_{b2} = 0.4$	$q\bar{q} o X$	$2.5\sigma(2.4\sigma)$	-1.3σ	$+4.4\sigma$	${<}0.01~\%$	0.51(0.83)	$0.00\substack{+0.19 \\ -0.00}$
$f_{b2} = 0.6$	$q\bar{q} \to X$	$2.4\sigma(2.4\sigma)$	-1.2σ	$+4.1\sigma$	0.01~%	0.53(0.83)	$0.00\substack{+0.20 \\ -0.00}$
$f_{b2} = 0.8$	$q\bar{q} \to X$	$2.4\sigma(2.4\sigma)$	-1.0σ	$+3.9\sigma$	0.02~%	0.55(0.83)	$0.00\substack{+0.21 \\ -0.00}$
1^{+}	$q\bar{q} \to X$	$2.4\sigma(2.4\sigma)$	-0.8σ	$+3.8\sigma$	0.04~%	0.57(0.81)	$0.00\substack{+0.22\\-0.00}$

Exclusion of Spin-2 hypotheses

Spin/CP Quantum numbers: Exploration in Production

SM Higgs via VBF Qualitative remarks

$$\sigma(fa \to f'X) \approx \int dx dp_T^2 P_{V/f}(x, p_T^2) \sigma(Va \to X)$$

$$\begin{split} P_{V/f}^{T}(x,p_{T}^{2}) &= \frac{g_{V}^{2}+g_{V}^{2}}{8\pi^{2}}\frac{1+(1-x)^{2}}{x}\frac{p_{T}^{2}}{\left(p_{T}^{2}+(1-x)M_{V}^{2}\right)^{2}}\\ P_{V/f}^{L}(x,p_{T}^{2}) &= \frac{g_{V}^{2}+g_{V}^{2}}{4\pi^{2}}\frac{1-x}{x}\frac{(1-x)M_{V}^{2}}{\left(p_{T}^{2}+(1-x)M_{V}^{2}\right)^{2}}. \end{split}$$

□ Unlike QCD partons that scale like 1/P_T², here P_T~sqrt(1x)M_w

 \mathbf{q}_2

H⁰

q₄

 \mathbf{q}_1

q₃

W/Z

□ Due to the 1/x behavior of the Weak boson the outgoing parton energy (1-x)E is large \rightarrow forward jets □ At high P_T $P_{V/f}^T \sim 1/p_T^2$ and $P_{V/f}^L \sim 1/p_T^4$

Well-defined prediction of the SM. Kinematics of scattered quarks, very sensitive to new physics

T.Plehn, D.Rainwater and D.Zeppenfeld Phys.Rev.Lett. 88 (2002) 051801

 $pp \rightarrow qq'H \rightarrow qq'\tau\tau, qq'WW, qq'\gamma\gamma$

 $\begin{array}{ll} p_{T_j} \geq 20 \; {\rm GeV} & \bigtriangleup R_{jj} \geq 0.6 & |\eta_j| \leq 4.5 \\ |\eta_{j_1} - \eta_{j_2}| \geq 4.2 & \eta_{j_1} \cdot \eta_{j_2} < 0 \end{array}$

C. Englert, D. Gonsalves-Neto, K.Mawatari and T. Plehn, JHEP 1301 (2013) 148

A. Djouadi, R.M. Godbole, B.M., K.Mohan, Phys. Lett. B723 307-313

General tensor form of HVV coupling, where H is a scalar

Extension of the SM high higher dimension operators. Where the Lambdas are effective coupling strengths. 71

In the above mention papers we realized that the kinematics of the scattered quarks have more information about the tensor structure of the HVV coupling than hitherto believed

Associated VH production [$Z(\rightarrow II)H(\rightarrow bb)$]

Associated VH production

Fiducial Total and Differential Cross-sections

Differential Cross-section Measurements

- First Higgs differential cross section results
- Follows closely the coupling analysis strategy
- Allows to probe kinematics of Higgs boson
- As model-independent as possible

- Extract signal at reconstruction level
- Derive unfolding factors to unfold to particle level
- All results presented at particle level
- Also provide NP and fiducial correction factors for theorist use

When assuming the Standard Model the signal strength of H->γγ is 1.17 when releasing that condition we get 1.42. Still these two numbers are statistically compatible

When measuring the Higgs boson transverse momentum certain discrepancies were found with the Standard Model

Comparison of the mean of the observable between data and MCs

Ratio of 1st moment relative to data Overall, reasonable agreement between data and the SM MC, but large errors. Future measurements very interesting s¹

