### CTEQ School on QCD Analysis and Electroweak Phenomenology

### Introduction to the Parton Model and Perturbative QCD Fred Olness (SMU)

University of Pittsburgh, PA 18-28 July 2017



 $\Lambda$  of order of the proton mass scale

### 



 $d\sigma \sim \frac{4\pi\alpha^2}{Q^2} \times \sum_i e_i^2$ 



### HOW TO CHARACTERIZE THE PROTON

## **Deeply Inelastic Scattering**

(DIS)

Cf. lecture by Simona Malace

### **Inclusive Deeply Inelastic Scattering (DIS)**

 $\ell_{1} \qquad \{E_{2}, \theta\}$   $q = \ell_{1} - \ell_{2}$  W



Measure  $\{E_2, \theta\} \Leftrightarrow \{x, Q^2\}$  Inclusive

Deep:  $Q^2 \ge 1 GeV^2$ 

Inelastic: 
$$W^2 \ge M_p^2$$

#### Analogue of Rutherford scattering





Measure 
$$\{E_2, \theta\} \Leftrightarrow \{x, Q^2\}$$
  

$$Q^2 = -q^2 = 4E_1E_2\sin^2(\theta/2)$$

$$x = \frac{Q^2}{2p \cdot q} = \frac{2E_1E_2\sin^2(\theta/2)}{M(E_1 - E_2)}$$

Other common DIS variables

$$d\sigma \sim |A|^2$$

$$\nu = \frac{p \cdot q}{p^2} = E_1 - E_2$$
$$y = \frac{\nu}{E_1} = \frac{Q^2}{2ME_2 x}$$

### Lepton Tensor (L) and Hadronic Tensor (W)



**Current Interactions** 

**W and F Structure Functions** 



$$d\sigma \sim |A|^2 \sim L^{\mu\nu} W_{\mu\nu}$$
$$L^{\mu\nu} = L^{\mu\nu}(\ell_1, \ell_2)$$
$$W^{\mu\nu} = W^{\mu\nu}(p, q)$$

Details: There are also  $W_{4,5,6}$ but we neglect these

$$W^{\mu\nu} = -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 - \frac{i\,\epsilon^{\mu\nu\rho\sigma}p_{\rho}q_{\sigma}}{2M^2}W_3 + \dots$$

Convert to "Scaling" Structure Functions

$$W_1 \to F_1 \qquad W_2 \to \frac{M}{\nu}F_2 \qquad W_3 \to \frac{M}{\nu}F_3$$

$$\frac{d\sigma}{dx\,dy} = N\left[xy^2F_1 + (1 - y - \frac{Mxy}{2E_2})F_2 \pm y(1 - y/2)xF_3\right]$$

$$\frac{d\sigma}{dx\,dy} = N\left[xy^2F_1 + (1 - y - \frac{Mxy}{2E_2})F_2 \pm y(1 - y/2)xF_3\right]$$

Taking the limit  $M \to 0$  for neutrino DIS

$$\frac{d\sigma^{\nu}}{dx\,dy} = N\left[(1-y)^2F_+ + 2(1-y)F_0 + F_-\right]$$

For 
$$\bar{\nu}, F_+ \Leftrightarrow F_-$$

$$F_{1} = \frac{1}{2}(F_{-} + F_{+}) \qquad F_{+} = F_{1} - \frac{1}{2}F_{3}$$

$$F_{2} = x(F_{-} + F_{+} + 2F_{0}) \qquad F_{-} = F_{1} + \frac{1}{2}F_{3}$$

$$F_{3} = (F_{-} - F_{+}) \qquad F_{0} = \frac{1}{2x}F_{2} - F_{1}$$

A Review of Target Mass Corrections. Ingo Schienbein et al. J.Phys.G35:053101,2008.

### **The Scaling of the Proton Structure Function**

### **Data is (relatively) independent of energy**

Scaling Violations observed at extreme x values



# Parton Model

**Proton as a bag of free Quarks** 



#### Quarks are not quite free



Corrections to this picture (non-factorizable/ higher twist) terms are suppressed by powers of  $\Lambda/Q$ 



Parton Distribution Functions

(PDFs)  $f_{P \to a}$ 

are the key to calculations involving hadrons!!!



Cross section is product of independent probabilities!!! (Homework Assignment)



Parton Distribution Functions

(PDFs)  $f_{P \to a}$ 

are the key to calculations involving hadrons!!!

$$\sigma_{P_{\mathcal{Y}} \to c} = f_{P \to a} \otimes \hat{\sigma}_{a_{\mathcal{Y}} \to c}$$

$$\begin{aligned} & \text{Scalar} \\ & f(x) = \sum \, q(x) + \bar{q}(x) + \phi(x) + \ldots = u(x) + d(x) + \ldots \end{aligned}$$

Part 1) Show these 3 definitions are equivalent; work out the limits of integration.

$$f \otimes g = \int_0^1 \int_0^1 f(x) g(y) \delta(z - x * y) dx dy$$
$$f \otimes g = \int f(x) g(\frac{z}{x}) \frac{dx}{x}$$
$$f \otimes g = \int f(\frac{z}{y}) g(y) \frac{dy}{y}$$

Part 2) Show convolutions are the "natural" way to multiply probabilities.

If f represents the heads/tails probability distribution for a single coin flip, show that the distribution of 2 coins is  $f \oplus f$  and 3 coins is:  $f \oplus f \oplus f$ .

$$f \oplus g = \int f(x) g(y) \delta(z - (x + y)) dx dy$$
$$f(x) = \frac{1}{2} (\delta(1 - x) + \delta(1 + x))$$

Careful: convolutions involve + and \*

**BONUS**: How many processes can you think of that don't factorize?

$$\frac{d\sigma^{\nu}}{dx \, dy} = N \left[ (1-y)^2 F_+ + 2(1-y)F_0 + F_- \right]$$

$$\frac{d\sigma^{\nu}}{dx \, dy} = N \left[ (1-y)^2 (2\bar{q}) + 2(1-y)(\phi) + (2q) \right]$$

$$\frac{d\sigma^{\nu}}{dx \, dy} = N \left[ (1-y)^2 (2\bar{q}) + 2(1-y)(\phi) + (2q) \right]$$

$$\frac{Gompute}{\text{in Parton}}$$

$$\frac{Gompute}{Model}$$

$$\frac{Gompute}{Model}$$

$$\frac{F_+}{F_+} = 2\bar{q} \qquad F_+ = F_1 - \frac{1}{2}F_3$$

$$F_- = 2q \qquad F_- = F_1 + \frac{1}{2}F_3$$

$$F_0 = \phi \qquad F_0 = \frac{1}{2x}F_2 - F_1$$

$$\frac{Gompute}{F_+} = 2\bar{q} \qquad F_- = F_1 + \frac{1}{2}F_3$$

$$\frac{F_+}{F_0} = \frac{1}{2x}F_2 - F_1$$

$$\frac{Gompute}{F_+} = 2xF_0$$

$$F_- = 2xF_0$$

 $F_L$ 

### Why is F<sub>1</sub> special ???



are important

**Masses** are

important

TOY

PDFs

$$f(x,Q) = u(x,Q) + d(x,Q) = 2 \,\delta(x - \frac{1}{3}) + 1 \,\delta(x - \frac{1}{3})$$

$$u(x,Q) = 2 \ \delta(x - \frac{1}{3})$$

$$d(x,Q) = 1 \ \delta(x - \frac{1}{3})$$
Perf

Perfect Scaling PDFs *Q independent* 

Quark Number Sum Rule

$$\langle q \rangle = \int_0^1 dx \, q(x) \qquad \langle u \rangle = 2 \quad \langle d \rangle = 1 \quad \langle s \rangle = 0$$

### Quark Momentum Sum Rule

$$\langle x q \rangle = \int_0^1 dx \, x \, q(x) \qquad \langle x u \rangle = \frac{2}{3} \quad \langle x d \rangle = \frac{1}{3}$$

n1

$$F_{+} = 2\bar{q}$$

$$F_{-} = 2q$$

$$F_{L} = \phi$$

$$q + \bar{q} = \frac{F_{+} + F_{-}}{2}$$
Momentum Sum Rule
$$\sum_{i} \langle x q_{i} \rangle = \int_{0}^{1} dx \sum_{i} x \left[q_{i}(x) + \bar{q}_{i}(x)\right] = 50\% \neq 100\%$$
Substitute F

### **SOLUTION:**

Gluons carry half the momentum, but don't couple to the photons

#### **Gluons smear out PDF momentum**



### Gluons allow partons to exchange momentum fraction



 $\alpha_{s}$  is large at low Q, so it is easy to emit soft gluons



Reconsider the Quark Number Sum Rule

$$\langle u, d \rangle = \infty$$
  $\langle q \rangle = \int_0^1 dx \, q(x)$ 



$$\langle u - \bar{u} \rangle = 2$$
  $\langle d - \bar{d} \rangle = 1$   $\langle s - \bar{s} \rangle = 0$ 

*SOLUTION*: Infinite number of u quarks in proton, because they can be pair produced: *(We neglect saturation ....)* 



cf., lectures by Pavel Nadolsky



Scaling violations are essential feature of PDFs

Where do PDFs come from???? Universality!!!



# HOMEWORK

Sum Rules & Structure Functions

#### Homework: Part 1 Structure Functions & PDFs

$$\begin{array}{rcl} F_2^{ep} &=& \frac{4}{9}x \left[ u + \bar{u} + c + \bar{c} \right] \\ && + & \frac{1}{9}x \left[ d + \bar{d} + s + \bar{s} \right] \\ F_2^{en} &=& \frac{4}{9}x \left[ d + \bar{d} + c + \bar{c} \right] \\ && + & \frac{1}{9}x \left[ u + \bar{u} + s + \bar{s} \right] \\ F_2^{\nu p} &=& 2x \left[ d + s + \bar{u} + \bar{c} \right] \\ F_2^{\nu n} &=& 2x \left[ u + s + \bar{d} + \bar{c} \right] \\ F_2^{\bar{\nu} p} &=& 2x \left[ u + c + \bar{d} + \bar{s} \right] \\ F_2^{\bar{\nu} p} &=& 2x \left[ d + c + \bar{u} + \bar{s} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[ d + s - \bar{u} - \bar{c} \right] \\ F_3^{\nu n} &=& 2 \left[ u + s - \bar{d} - \bar{c} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[ u + c - \bar{d} - \bar{s} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[ d + c - \bar{u} - \bar{s} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[ d + c - \bar{u} - \bar{s} \right] \end{array}$$

*Verify: i.e., Check for typos ...* 

We use these different observables to dis-entangle the flavor structure of the PDfs

> See talks by Stephen Parke & Jonathan Paley (Neutrinos) & Pavel Nadolsky (PDFs)

In the limit  $\theta_{Cabibbo} = 0$  $m_c = 0$ 

*Verify: i.e.*, *Check for typos ...* 

Before the parton model was invented, these relations were observed. Can you understand them in the context of the parton model?

Gross Llewellyn-Smith (1969)

Adler

(1966)

Bjorken

(1967)

$$\int_{0}^{1} dx \left[ F_{3}^{\nu p} + F_{3}^{\bar{\nu} p} \right] = 6$$

 $\int_{0}^{1} \frac{dx}{2x} \left[ F_{2}^{\nu n} - F_{2}^{\nu p} \right] = 1$ 

 $\int_{0}^{1} \frac{dx}{2x} \left[ F_{2}^{\bar{\nu}p} - F_{2}^{\nu p} \right] = 1$ 

Gottfried if 
$$\bar{u} = \bar{d} \int_0^1 dx \left[ F_2^{ep} - F_2^{en} \right] = \frac{1}{3}$$

Homework (19??)

$$\frac{5}{18}F_2^{\nu N} - F_2^{eN} = ?$$

This one has been particularly important/controversial

# Evolution

What does the proton look like???



### The answer is dependent upon the question

#### `Cheshire Puss,' ...

- 'Would you tell me, please, which way I ought to go from here?'
- `That depends a good deal on where you want to get to,' said the Cat.
- 'I don't much care where--' said Alice.
- `Then it doesn't matter which way you go,' said the Cat.
- `--so long as I get somewhere,' Alice added as an explanation.
- 'Oh, you're sure to do that,' said the Cat, `if you only walk long enough.'

### **Proton is a complex object**

 $\Lambda_{QCD} \sim 200 \,\mathrm{MeV}$ 



 $m_t m_b m_c m_s m_d m_u m_q$ 175 4.5 1.3 0.3 0.00? 0.00? 0

### **Evolution of the PDFs**



### **Homework: Mellin Transform**

$$\widetilde{f}(n) = \int_0^1 dx \, x^{n-1} \, f(x)$$

$$\sigma=f\otimes\omega$$

$$f(x) = \frac{1}{2\pi i} \int_C dn \, x^{-n} \, \widetilde{f}(n)$$

$$\widetilde{\sigma}=\widetilde{f}~\widetilde{\omega}$$

C is parallel to the imaginary axis, and to the right of all singularities

1) Take the Mellin transform of  $f(x) = \sum_{m=1}^{\infty} a_m x^m$ , and verify the inverse transform of  $\tilde{f}$  regenerates f(x)

2) Take the Mellin transform of  $\sigma = f \otimes \omega$  to demonstrate that the Mellin transform separates a convolution yields  $\tilde{\sigma} = \tilde{f} \, \tilde{\omega}$ .

A useful reference:

Courant, Richard and Hilbert, David. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989. 561 p.

### **Renormalization Group Equation**



### **Evolution of the PDFs**



**Evolution of the PDFs** 



### **The Splitting Functions:**



Definition of the Plus prescription:

$$\int_0^1 dx \, \frac{f(x)}{(1-x)_+} = \int_0^1 dx \, \frac{f(x) - f(1)}{(1-x)}$$

1) Compute:

$$\int_{a}^{1} dx \, \frac{f(x)}{(1-x)_{+}} = ???$$

2) Verify:

$$P_{qq}^{(1)}(x) = C_F \left[ \frac{1+x^2}{1-x} \right]_+ \equiv C_F \left[ (1+x^2) \left[ \frac{1}{1-x} \right]_+ + \frac{3}{2} \delta(1-x) \right]_{1-x=0}^{x}$$

Observe

$$P_{gg}^{(1)}(x) = 2C_F \left[ \frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] + \left[ \frac{11}{6}C_A - \frac{2}{3}T_F N_F \right] \delta(1-x)$$



### **HOMEWORK:** Part 3: Symmetries & Limits

Verify the following relation among the regular parts (from the real graphs)

For the regular part show:  $P_{gq}^{(1)}(x) = P_{qq}^{(1)}(1-x)$  $P_{gq}^{(1)}(x) = I_{qq}^{(1)}(1-x)$  $P_{gg}^{(1)}(x) = P_{gg}^{(1)}(1-x)$ 

Verify, in the soft limit:

$$P_{qq}^{(1)}(x) \xrightarrow[x \to 1]{} 2C_F \frac{1}{(1-x)_+}$$

$$P_{gg}^{(1)}(x) \xrightarrow[x \to 1]{} 2C_F \frac{1}{(1-x)_+}$$



Verify conservation of momentum fraction

$$\int_0^1 dx \, x \, \left[ P_{qq}(x) + P_{gq}(x) \right] = 0$$

$$\int_{0}^{1} dx \, x \, \left[ P_{qg}(x) + P_{gg}(x) \right] = 0$$

Receeded

Verify conservation of fermion number

$$\int_0^1 dx \ [P_{qq}(x) - P_{q\bar{q}}(x)] = 0$$

### Homework: Part 5: Using the Real to guess the Virtual

Use conservation of fermion number to compute the delta function term in  $P(q\leftarrow q)$ 

$$\int_{0}^{1} dx \quad [P_{qq}(x) - P_{q\bar{q}}(x)] = 0$$
This term only  
starts at NNLO
$$P_{qq}^{(1)}(x) = C_{F} \left[ \frac{1+x^{2}}{1-x} \right]_{+} \equiv C_{F} \left[ (1+x^{2}) \left[ \frac{1}{1-x} \right]_{+} + \frac{3}{2} \delta(1-x) \right]$$

Powerful tool: Since we know real and virtual must balance, we can use to our advantage!!!

**Evolution of the PDFs** 



### Momentum Fraction



Rutherford Scattering  $\Rightarrow$  Deeply Inelastic Scattering (DIS) Works for protons as well as nuclei Compute Lepton-Hadron Scattering 2 ways Use Leptonic/Hadronic Tensors to extract Structure Functions Use Parton Model; relate PDFs to  $F_{123}$ Parton Model Factorizes Problem: PDFs are independent of process Thus, we can combine different experiments. ESSENTIAL!!! PDFs are not truly scale invariant; they evolve

We use evolution to "resum" an important set of graphs



Parton Distribution Functions

(PDFs)  $f_{P \to a}$ 

are the key to calculations involving hadrons!!!



Cross section is product of independent probabilities!!! (Homework Assignment)

# END OF LECTURE 2