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Recap:   Parton Model,   Factorization,   Evolution

Large m
Medium mSmall m

How does f change 
with scale m???

m dependence must balance

DGLAP Evolution Equation
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DIS

AT

NLO
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DIS at NLO

f
P a

a

Electron

Proton

g

c

Sample NLO contributions to DIS
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DIS   NLO   Kinematics

qq=k
1

p=k
2

k
3

k
4
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Mandelstam Variables {s,t,u}

{s,t,u} are partonic 
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Exercise
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p1 = E1 ,0 ,0 , p p1
2
=m1

2

p2 = E2 ,0 ,0 ,− p p2
2
=m2

2

p
1 p

2

E1,2 =
s±m1

2
∓m2

2

2 s
p =

 s , m1
2, m2

2


2 s

 a ,b , c = a2
b2

c2
−2a bbcc a

1) Let's work out the general 22 kinematics for general masses. 

a) Start with the incoming particles. 
    Show that these can be written in the general form:

... with the following definitions:

Note that D(a,b,c) is symmetric with respect to its arguments, 
and involves the only invariants of the initial state: s, m

1
2, m

2
2.

b) Next, compute the general form for the final state particles, p
3
 and p

4
. Do this by first aligning p

3
 and 

p
4
 along the z-axis (as p

1
 and p

2
 are), and then rotate about the y-axis by angle q.

Homework 

p
1

p
4

p
3

p
2

q
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Homework Part 2

Hint: by using invariants you can  keep it simple.
I.e., don't do it the way Goldstein does.

The power of invariants

p
1

p
4

p
3

p
2

q
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Matrix element: NLO DIS

Singular at z=1
Singular at x=1

Collinear Singularity
Soft Singularity

For the real 
22 graphs

Separate infinity, and subtract Separate infinity, cancel with virtual graphs
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The Plan
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Collinear Divergences

Plan

Choices

Method

1) Separate    at z=1

2) Subtract …     (should be part of PDF)

Need to regulate  

1) Dimensional Regularization

2) Quark Mass

3) q Cut

Looks like a 
PDF splitting 
function
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Soft Singularities

Plan

Choices

Method

1) Separate    at x=1

2) Cancel between Real and Virtual graphs

Need to regulate  

1) Dimensional Regularization

2) Gluon Mass

3) ...
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Dimensional Regularization 
meets 

Freshman E&M

M. Hans,  Am.J.Phys. 51 (8) August (1983). p.694
C. Kaufman, Am.J.Phys. 37 (5), May (1969) p.560
B. Delamotte, Am.J.Phys. 72 (2) February (2004) p.170

 Regularization, Renormalization, and Dimensional Analysis: 
Dimensional Regularization meets Freshman E&M.

Olness & Scalise,  arXiv:0812.3578 [hep-ph]

We'll use a simple example to illustrate the key points: 13



  

y

x r

dV=
1

40

dQ
r

V=


40
∫

−∞

∞

dy
1

 x2
 y2

= ∞

Infinite Line of Charge

Note:     can 
be very useful

r= x2
 y2

=Q / y
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V kx=

=


40
∫

−∞

∞

dy
1

kx2 y2

=


40
∫

−∞

∞

d  y
k  1

 x2
 y /k 2

=


40
∫

−∞

∞

dz
1

 x2
z2

=V x

Scale Invariance

V kx =V x 

y

x r

Note:    + c = 
       -  =  c

How do we distinguish 
this from 

  -  =  c+17Naively Implies:
V(kx) – V(x) = 0
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  Problem solved at the expense of an extra scale L
AND we have a broken symmetry: translation invariance

V=


40
∫

−L

L
dy

1

 x2
 y2

V=


40

log[LL2
x2

−LL2
x2 ]

E  x=
−dV

dx
=



20 x
L

L2
x2




20 x

V=V x1−V  x2


L∞



40

log[ x2
2

x1
2 ]

Cutoff Method

V(x) depends on artificial regulator L

We cannot remove the regulator L

All physical quantities are independent of the regulator:

Electric Field

Energy
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V=


40
∫

−Lc

Lc
dy

1

 x2
 y2

V=


40

log[LcLc2
x2

−L−cL−c2
x2 ]

Broken Translational Symmetry

y

x r

+L-L

Shift:  y   y' = y – c

y=[+L+c, -L+c]

V(r)  depends on “y” coordinate!!! In QFT, 
gauge symmetries 

are important. 
E.g., Ward identies
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Dimensional Regularization

dy d n y=
d  n

2
yn−1 dy

V=


40
∫0

∞

dn
yn−1


n−1

dy

 x2
 y2

n=∫ d n=
2n/2

n /2
1,2,3,4={2,2 , 4 , 22

}

V=


40
 

2

x2

 []


 

Compute in n-dimensions

New scale m

Each term is 
individually 

dimensionaless
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y

x r

dV=
1

40

dQ
r

V=


4 0

f  x

Why do we need an extra scale m ???

r= x2
 y2

=Q / y
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Dimensional Regularization

E  x=
−dV

dx
=



40
[ 22

 []


 x12 ] 

0


20

1
x

V=V x1−V  x2


 0


40

log [ x2
2

x1
2 ]

Problem solved at the expense of an extra scale m AND regulator e

Translation invariance is preserved!!!

All physical quantities are independent of the regulators:

Electric Field

Energy

Dimensional Regularization respects symmetries
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Renormalization

V 


40 [ 1ln [ e−E

 ]ln [ 
2

x2 ]]

V MS  x1−V MS x2=V=V MS x1−V MS x2

V MS  x1−V MS x2≠V ≠V MS  x1−V MS  x2

V 


40 [ 1ln [ e− E

 ]ln [ 
2

x2 ]]

V 


40 [ 1ln [ e− E

 ]ln [ 
2

x2 ]]

Original

MS-Bar

MS

Physical quantities are independent of renormalization scheme!

But only if performed consistently:
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Connection to QFT

V 


40 [ 1ln [ e− E

1  ]ln [ 
2

x2 ]]

D


=  4

2

Q2   1−

 1−2
 [ 1ln [ e−E

4 ]ln [ 
2

Q2 ]]

This was the potential from our “Toy” calculation:

This is a partial result from 
a real NLO Drell-Yan Calculation:
Cf., B. Potter
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Recap

Regulator provides unique definition of V, f, w

Cutoff regulator L:
simple, but does NOT respect symmetries

Dimensional regulator e:
respects symmetries: translation, Lorentz, Gauge invariance
introduces new scale m

All physical quantities (E, dV, s) are independent of the regulator 
AND the new scale m
Renormalization group equation: ds/dm=0

We can define renormalized quantities (V,f,w)
Renormalized (V,f,w) are scheme dependent and arbitrary
Physical quantities (E,dV, s) are unique and scheme independent 

if we apply the scheme consistently

23



  

Apply 

Dimensional 

Regularization 

to QFT
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D-Dimensional Phase Space

1

2

3

4
1-particle

Final state

Final state

Enter, m  scale

All the pieces
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d 3 p

2
3 2 E

=
d 4 p

2
4
2 


 p2

−m2


d  =
d 3 p3

2
3 2 E3

d 3 p4

2
3 2 E4

2
4
 p1 p2− p3− p4 =

d cos
16

#1) Show: 

#2) Show that the 2-body phase space  can be expressed as: 

This relation is often useful as the RHS is manifestly Lorentz invariant

Note, we are working with massless partons, and  q  is in the partonic CMS frame

Homework: Part 1 26



  

Soft Singularities

27



  

From
phase
space

Soft
Singularity

Finite 
remainder

To be canceled 
by virtual 
diagram

This only makes sense 
under the integral

Soft Singularities

REAL VIRTUAL

28



  

KLN (Kinoshita, Lee, Nauenberg) Theorem

virtual

real

virtual

real
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Collinear Singularities
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Collinear Singularity

This is finite 
for z=[-1,1]

This looks like 
part of 
the PDF

Key 
Points

1) Subtract

2) This is defined  by the scheme

3) Need to match schemes of  w and PDF
... MS, MS-Bar, DIS, ...

4) Note we have regulator e and extra scale m 

... looks like a splitting kernel
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How do we know 

what goes in w and PDFs ???

Compute NLO Subtractions 

for a partonic target

32



  

Basic Factorization Formula

At Zeroth Order:


0
= f 0

⊗
0
 O 

2
/Q2




0
= f 0

⊗
0
=⊗

0
=

0

Use: f0 = d   for a parton target.

Therefore:

Warning: This trivial result leads to many misconceptions at higher  orders

f 0 f 1 

for parton target


0
=

0

Higher Twist

Application of Factorization Formula at Leading Order (LO) 33



  

Basic Factorization Formula

At First Order:

We used: f0 = d  for a parton target.

Therefore:

s1 
f1  s0 


1
= f 1

⊗
0
 f 0

⊗
1


1
= f 1

⊗
0


1


1
=

1
− f 1

⊗
0

Application of Factorization Formula at NLO

f 0 f 1 

w1 =

P(1) defined by 
scheme choice
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Combined Result:

TOT SUB
NLOLO

TOT = LO + NLO  SUB

Subtraction


0
 

1
= 

0


1
− f 1

⊗
0

Application of Factorization Formula at NLO

Complete NLO Term: w 1
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HOMEWORK PROBLEM:   NNLO WILSON COEFFICIENTS

Use the Basic Factorization Formula

At Second Order   (NNLO):

Therefore:

Compute w2 at second order.
Make a diagrammatic representation of each term.


2
=???

Include Fragmentation 
Functions   d

36



  

Do we get different answers 

with different schemes???
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Pictorial Demonstration of Scheme Consistency

SUBNLOLO
Subtraction

f
P a

a

Electron

Proton

g

c

f 0 f 1 + 

+ -
+ 

Parton Model

Evolution Equation

38



  

Pictorial Demonstration of Scheme Consistency

SUB
NLOLO Subtraction

f 0 f 1 + 

+ -+ 

From NLO Subtraction

From PDF Evolution
Contains BOTH collinear 
and non-collinear region

P(1) defined by 
scheme choice

QCD is 
Bullet-proof

Complete NLO Term

39



  

Do we get different answers 

with different schemes???

NO !!!NO !!!

40



  

End of lecture 3: Recap

NLO Theoretical Calculations:

Essential for accurate comparison with experiments

We encounter singularities:

Soft singularities: cancel between real and virtual diagrams

Collinear singularities: “absorb” into PDF

Regularization and Renormalization:

Regularize & Renormalize intermediate quantities 

Physical results independent of regulators (e.g., L, or m and e)

Renormalization introduces scheme dependence (MS-bar, DIS)

Factorization works: 

Hard cross section        or  w  is not the same as s 

Scheme dependence cancels out (if performed consistently)
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END OF LECTURE 
3

42
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