CTEQ School on

QCD Analysis and Electroweak Phenomenology

University of Pittsburgh, PA
18-28 July 2017

DIS

AT

NLO

Sample NLO contributions to DIS

$$
\begin{gathered}
q=k_{1} \\
k_{1} \equiv q^{\mu}=\left(\frac{s-Q^{2}}{2 \sqrt{s}}, 0,0, \frac{\left(s+Q^{2}\right)}{2 \sqrt{s}}\right) \quad-q^{2}=Q^{2}>0 \\
k_{2} \equiv p^{\mu}=\left(\frac{s+Q^{2}}{2 \sqrt{s}}, 0,0, \frac{-\left(s+Q^{2}\right)}{2 \sqrt{s}}\right) \\
k_{3}^{\mu}=\frac{\sqrt{s}}{2}(1,+\sin \theta, 0,+\cos \theta) \\
k_{4}^{\mu}=\frac{k_{3}}{2}(1,-\sin \theta, 0,-\cos \theta)
\end{gathered} p^{2}=0
$$

$$
s=\left(k_{1}+k_{2}\right)^{2} \equiv\left(k_{3}+k_{4}\right)^{2}
$$

$$
t=\left(k_{1}-k_{3}\right)^{2} \equiv\left(k_{2}-k_{4}\right)^{2}
$$

$$
u=\left(k_{1}-k_{4}\right)^{2} \equiv\left(k_{2}-k_{3}\right)^{2}
$$

$$
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} \quad \text { Exercise }
$$

$$
\begin{gathered}
s=+Q^{2} \frac{(1-x)}{x} \quad t=-Q^{2} \frac{(1-z)}{2 x} \quad u=-Q^{2} \frac{(1+z)}{2 x} \\
x=\frac{Q^{2}}{2 p \cdot q} \quad x \subset[0,1] \quad z \equiv \cos \theta \quad z \subset[-1,1]
\end{gathered}
$$

1) Let's work out the general $2 \rightarrow 2$ kinematics for general masses.
a) Start with the incoming particles.

Show that these can be written in the general form:

$$
\begin{array}{ll}
p_{1}=\left(E_{1}, 0,0,+p\right) & p_{1}^{2}=m_{1}^{2} \\
p_{2}=\left(E_{2}, 0,0,-p\right) & p_{2}^{2}=m_{2}^{2}
\end{array}
$$

... with the following definitions:

$$
\xrightarrow[p_{4}]{p_{1}}
$$

$$
\begin{gathered}
E_{1,2}=\frac{\hat{s} \pm m_{1}^{2} \mp m_{2}^{2}}{2 \sqrt{\hat{s}}} \quad p=\frac{\Delta\left(\hat{s}, m_{1}^{2,} m_{2}^{2}\right)}{2 \sqrt{\hat{s}}} \\
\Delta(a, b, c)=\sqrt{a^{2}+b^{2}+c^{2}-2(a b+b c+c a)}
\end{gathered}
$$

Note that $\Delta(a, b, c)$ is symmetric with respect to its arguments, and involves the only invariants of the initial state: $s, m_{1}{ }^{2}, m_{2}{ }^{2}$.
b) Next, compute the general form for the final state particles, p_{3} and p_{4}. Do this by first aligning p_{3} and p_{4} along the z -axis (as p_{1} and p_{2} are), and then rotate about the y -axis by angle θ.

PROBLEM \#2: Consider the reaction: $p p \rightarrow p p(12 \rightarrow 34)$ with CMS scattering angle θ. The CMS energy is $\sqrt{s}=2 \mathrm{TeV}$.
a) Compute the boost from the CMS frame to the rest frame of \#2 (lab frame)
b) Compute the energy of $\# 1$ in the lab frame.
c) Compute the scattering angle $\theta_{l a b}$ as a function of the CMS θ and invariants.

Hint: by using invariants you can keep it simple. I.e., don't do it the way Goldstein does.

The power of invariants

$$
\begin{aligned}
& |\mathcal{M}|^{2}=\frac{s}{-t}+\frac{-t}{s}+\frac{2 u Q^{2}}{s t} \\
& \simeq \frac{2(1-x)}{(1-z)}+\frac{2(1-z)}{(1-x)}+\frac{2 x(1+z)}{(1-x)(1-z)} \\
& \text { Singular at } \mathrm{z}=1 \\
& z \rightarrow 1, \quad \cos \theta \rightarrow 1 \\
& \theta \rightarrow 0, \quad t \rightarrow 0 \\
& \text { For the real } \\
& 2 \rightarrow 2 \text { graphs } \\
& \text { Singular at } \mathrm{x}=1 \\
& x \rightarrow 1, \quad s \rightarrow 0
\end{aligned}
$$

Collinear Singularity

The Plan

Method
Need to regulate ∞

Choices 1) Dimensional Regularization
2) Quark Mass
3) $\theta \mathrm{Cut}$

Plan

1) Separate ∞ at $x=1$
2) Cancel between Real and Virtual graphs

Method
Need to regulate ∞

Choices

1) Dimensional Regularization
2) Gluon Mass
3) ...

Dimensional Regularization

 meets
Freshman E\&M

C. Kaufman, Am.J.Phys. 37 (5), May (1969) p. 560
B. Delamotte, Am.J.Phys. 72 (2) February (2004) p. 170

Regularization, Renormalization, and Dimensional Analysis:
Dimensional Regularization meets Freshman E\&M.
Olness \& Scalise, arXiv:0812.3578 [hep-ph]

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d y \frac{1}{\sqrt{x^{2}+y^{2}}}=\infty
$$

Note: ∞ can be very useful

$$
\begin{aligned}
& V(k x)= \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d y \frac{1}{\sqrt{(k x)^{2}+y^{2}}} \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d\left(\frac{y}{k}\right) \frac{1}{\sqrt{x^{2}+(y / k)^{2}}} \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d z \frac{1}{\sqrt{x^{2}+z^{2}}} \\
& =V(x)
\end{aligned}
$$

$$
V(k x)=V(x)
$$

Naively Implies:

$$
V(k x)-V(x)=0
$$

Note: $\infty+c=\infty$
$\therefore \quad \infty-\infty=c$
How do we distinguish this from
$\infty-\infty=c+17$

$$
\begin{array}{ll}
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-L}^{+L} d y \frac{1}{\sqrt{x^{2}+y^{2}}} & \mathrm{~V}(\mathrm{x}) \text { depends on artificial regulator } \mathrm{L} \\
V=\frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{+L+\sqrt{L^{2}+x^{2}}}{-L+\sqrt{L^{2}+x^{2}}}\right] & \text { We cannot remove the regulator } \mathrm{L}
\end{array}
$$

All physical quantities are independent of the regulator:

Electric Field

$$
\begin{aligned}
& E(x)=\frac{-d V}{d x}=\frac{\lambda}{2 \pi \epsilon_{0} x} \frac{L}{\sqrt{L^{2}+x^{2}}} \rightarrow \frac{\lambda}{2 \pi \epsilon_{0} x} \\
& \delta V=V\left(x_{1}\right)-V\left(x_{2}\right) \underset{L \rightarrow \infty}{\rightarrow \pi \epsilon_{0}} \log \left[\frac{\lambda}{x_{1}^{2}}\right]
\end{aligned}
$$

Problem solved at the expense of an extra scale L
AND we have a broken symmetry: translation invariance

Shift: $y \rightarrow y^{\prime}=y-c$
$\mathrm{y}=[+\mathrm{L}+\mathrm{c},-\mathrm{L}+\mathrm{c}]$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-L+c}^{+L+c} d y \frac{1}{\sqrt{x^{2}+y^{2}}}
$$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{+(L+c)+\sqrt{(L+c)^{2}+x^{2}}}{-(L-c)+\sqrt{(L-c)^{2}+x^{2}}}\right]
$$

$\mathrm{V}(\mathrm{r})$ depends on " y " coordinate!!!

In QFT,
gauge symmetries
are important.
E.g., Ward identies

Compute in n -dimensions

$$
d y \rightarrow d^{n} y=\frac{d \Omega_{n}}{2} \quad y^{n-1} d y
$$

$$
\Omega_{n}=\int d \Omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \quad \Omega_{1,2,3,4}=\left\{2,2 \pi, 4 \pi, 2 \pi^{2}\right\}
$$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{+\infty} d \Omega_{n} \frac{y^{n-1}}{\mu^{n-1}} \frac{d y}{\sqrt{x^{2}+y^{2}}}
$$

Each term is individually dimensionaless

$$
\begin{aligned}
& n=1-2 \epsilon \\
& \qquad V=\frac{\lambda}{4 \pi \epsilon_{0}}\left(\frac{\mu^{2 \epsilon}}{x^{2 \epsilon}} \frac{\Gamma[\epsilon]}{\pi^{\epsilon}}\right)
\end{aligned}
$$

All physical quantities are independent of the regulators:

Electric Field

$$
E(x)=\frac{-d V}{d x}=\frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{2 \epsilon \mu^{2 \epsilon} \Gamma[\epsilon]}{\pi^{\epsilon} x^{1+2 \epsilon}}\right] \underset{\epsilon \rightarrow 0}{\rightarrow} \frac{\lambda}{2 \pi \epsilon_{0}} \frac{1}{x}
$$

Energy

$$
\delta V=V\left(x_{1}\right)-V\left(x_{2}\right) \underset{\epsilon \rightarrow 0}{\rightarrow} \frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{x_{2}^{2}}{x_{1}^{2}}\right]
$$

Problem solved at the expense of an extra scale $\mu \underline{\text { AND }}$ regulator ε
Translation invariance is preserved!!!

Dimensional Regularization respects symmetries

$$
\begin{array}{lll}
V & \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right] & \text { Original } \\
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[+\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right] & \text { MS } \\
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}[& \left.+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right] & \text { MS-Bar }
\end{array}
$$

Physical quantities are independent of renormalization scheme!

$$
V_{\overline{M S}}\left(x_{1}\right)-V_{\overline{M S}}\left(x_{2}\right)=\delta V=V_{M S}\left(x_{1}\right)-V_{M S}\left(x_{2}\right)
$$

But only if performed consistently:

$$
V_{\overline{M S}}\left(x_{1}\right)-V_{M S}\left(x_{2}\right) \neq \delta V \neq V_{M S}\left(x_{1}\right)-V_{\overline{M S}}\left(x_{2}\right)
$$

This was the potential from our "Toy" calculation:

$$
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{1 \pi}\right]+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right]
$$

This is a partial result from a real NLO Drell-Yan Calculation: Cf., B. Potter

$$
\frac{D(\epsilon)}{\epsilon}=\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right) \frac{\Gamma(1-\epsilon)}{\Gamma(1-2 \epsilon)} \rightarrow\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{4 \pi}\right]+\ln \left[\frac{\mu^{2}}{Q^{2}}\right]\right]
$$

Regulator provides unique definition of $\mathrm{V}, \mathrm{f}, \omega$
Cutoff regulator L:
simple, but does NOT respect symmetries
Dimensional regulator ε :
respects symmetries: translation, Lorentz, Gauge invariance introduces new scale μ

All physical quantities $(\mathrm{E}, \mathrm{dV}, \sigma)$ are independent of the regulator AND the new scale μ
Renormalization group equation: $\mathrm{d} \sigma / \mathrm{d} \mu=0$
We can define renormalized quantities ($\mathrm{V}, \mathrm{f}, \omega$)
Renormalized (V,f, ω) are scheme dependent and arbitrary Physical quantities ($\mathrm{E}, \mathrm{dV}, \sigma$) are unique and scheme independent if we apply the scheme consistently

Apply

Dimensional

Regularization

> to QFT

$$
\begin{aligned}
& d \sigma=\frac{1}{2 s}|\mathcal{M}|^{2} d \Gamma \\
& d \Gamma_{i}=\frac{d^{D} k_{i}}{(2 \pi)^{D}}(2 \pi) \delta\left(k_{i}^{2}\right) \quad \text { 1-particle } \\
& d \Gamma=d \Gamma_{3} d \Gamma_{4}(2 \pi)^{D} \delta^{D}\left(k_{1}+k_{2}-k_{3}-k_{4}\right) \\
& d \Gamma=\frac{1}{16 \pi}\left(\frac{s}{16 \pi}\right)^{-\epsilon} \frac{\left(1-z^{2}\right)^{-\epsilon}}{\Gamma[1-\epsilon]} d z \\
& g \rightarrow g \mu^{\epsilon} \\
& d \Gamma=\frac{1}{16 \pi}\left(\frac{16 \pi \mu^{2}}{Q^{2}}\right)^{+\epsilon} \frac{1}{\Gamma[1-\epsilon]} \frac{x^{\epsilon}}{(1-x)^{\epsilon}}\left(1-z^{2}\right)^{-\epsilon} d z
\end{aligned}
$$

\#1) Show:

$$
\frac{d^{3} p}{(2 \pi)^{3} 2 E}=\frac{d^{4} p}{(2 \pi)^{4}}(2 \pi) \delta^{+}\left(p^{2}-m^{2}\right)
$$

This relation is often useful as the RHS is manifestly Lorentz invariant
\#2) Show that the 2-body phase space can be expressed as:

$$
d \Gamma=\frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right)=\frac{d \cos (\theta)}{16 \pi}
$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

Soft Singularities

This only makes sense under the integral

$$
\frac{f(x)}{(1-x)_{+}}=\frac{f(x)-f(1)}{(1-x)}
$$

$$
\int_{0}^{1} d x f(x) \frac{x^{\epsilon}}{(1-x)^{1+\epsilon}}=\int_{0}^{1} d x \frac{f(x)-f(1)}{(1-x)}-\frac{1}{\epsilon} \int_{0}^{1} d x \delta(1-x) f(x)
$$

virtual

real

virtual

real

Collinear Singularities

$$
\int_{-1}^{1} d z\left(1-z^{2}\right)^{-\epsilon}|\mathcal{M}|^{2} \simeq-\underbrace{\frac{1}{\epsilon} \frac{\left(1+x^{2}\right)}{(1-x)}}_{\begin{array}{c}
\text { This looks like } \\
\text { part of } \\
\text { the PDF }
\end{array}}+\frac{1-4 x+4\left(1+x^{2}\right) \ln 2}{2(1-x)}
$$

... looks like a splitting kernel

Key
 Points

1) Subtract
2) This is defined by the scheme
3) Need to match schemes of ω and PDF ... MS, MS-Bar, DIS, ...
4) Note we have regulator ε and extra scale μ

How do we know

what goes in ω and PDFs ???

Compute NLO Subtractions

for a partonic target

Basic Factorization Formula

$$
\sigma=f \otimes \omega+\mathcal{O}\left(\Lambda^{2} / Q^{2}\right)
$$

At Zeroth Order:

$$
\sigma^{0}=f^{0} \otimes \omega^{0}+O\left(\Lambda^{2} / Q^{2}\right)
$$

Use: $f^{0}=\delta$ for a parton target.
Higher Twist

Therefore:

f^{0} f^{1} for parton target

$$
\sigma^{0}=f^{0} \otimes \omega^{0}=\delta \otimes \omega^{0}=\omega^{0}
$$

$$
\sigma^{0}=\omega^{0}
$$

Warning: This trivial result leads to many misconceptions at higher orders

Basic Factorization Formula

$$
\sigma=f \otimes \omega+\mathcal{O}\left(\Lambda^{2} / Q^{2}\right)
$$

At First Order:

$$
\begin{gathered}
\sigma^{1}=f^{1} \otimes \omega^{0}+f^{0} \otimes \omega^{1} \\
\sigma^{1}=f^{1} \otimes \sigma^{0}+\omega^{1}
\end{gathered}
$$

We used: $f^{0}=\delta$ for a parton target.
Therefore:

$$
\omega^{1}=\sigma^{1}-f^{1} \otimes \sigma^{0}
$$

$\omega^{1}=$

$$
f^{1} \sim \frac{\alpha_{s}}{2 \pi} P^{(1)}
$$

$P^{(l)}$ defined by scheme choice

Combined Result:

Use the Basic Factorization Formula

$$
\sigma=f \otimes \omega \otimes d+\mathcal{O}\left(\Lambda^{2} / Q^{2}\right)
$$

At Second Order (NNLO):

Therefore:

$$
\sigma^{2}=f^{2} \otimes \omega^{0} \otimes d^{0}+\ldots
$$

$$
+f^{1} \otimes \omega^{1} \otimes d^{0}+\ldots
$$

$$
\omega^{2}=? ? ?
$$

Compute ω^{2} at second order.
Make a diagrammatic representation of each term.

Do we get different answers with different schemes???

Do we get different answers with different schemes???

NLO Theoretical Calculations:
Essential for accurate comparison with experiments
We encounter singularities:
Soft singularities: cancel between real and virtual diagrams
Collinear singularities: "absorb" into PDF
Regularization and Renormalization:
Regularize \& Renormalize intermediate quantities
Physical results independent of regulators (e.g., L, or μ and ε)
Renormalization introduces scheme dependence (MS-bar, DIS)
Factorization works:
Hard cross section $\widehat{\sigma}$ or ω is not the same as σ
Scheme dependence cancels out (if performed consistently)

END OF LECTURE 3

