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DIS

Drell-Yan Process

e+e-

Important for Tevatron and LHC

Now we consider

We already studies
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What is the Explanation

hadron

hadron

lepton

lepton

Drell-Yan
e+e-  2 jets
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Drell-Yan and e+e- have an interesting historical relation
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The Process: p + Be  e+ e-  X

at  BNL   AGS

very narrow width 
 long lifetime

 A Drell-Yan Example:    Discovery of J/Psi 4
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related by crossing ...
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The November Revolution: 1973 5



We'll look at Drell-Yan 

Specifically  W/Z production
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Side Note: From  ppg  / Z /W,  we can obtain  ppg /Z/W l+l-
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Schematically:

For example:
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Kinematics in the

hadronic CMS
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Kinematics for Drell-Yan
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s = P1P2
2
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s
x1 x2

=
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 = x1 x2 =
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s
Therefore

Fractional energy2 between 
partonic and hadronic system

Kinematics for Drell-Yan

d
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d x1 d x2 = d dyUsing:
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p12= p1 p2=E12 ,0,0, pL
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Partonic CMS has longitudinal momentum w.r.t. the hadron frame

p
12

x
F
 is a measure of the longitudinal momentum

The rapidity is defined as: y =
1
2

ln {E12 pL

E12− pL
}

Rapidity & Longitudinal Momentum Distributions
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Kinematics for W / Z / Higgs Production

Tevatron
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LO  W+ Luminosities
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Kinematics for W production at Tevatron & LHC
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Tevatron LHC
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How do we measure the W-boson mass?

Can't measure W directly
Can't measure n directly
Can't measure longitudinal momentum

We can measure the P
T
 of the lepton

q

Kinematics in a Hadron-Hadron Interaction:

The CMS of the parton-parton system is moving 
longitudinally relative to the hadron-hadron system
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Suppose lepton distribution is uniform in q

The dependence is actually (1+cosq)2, but we'll worry about that later 
What is the distribution in P

T
?

beam direction
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Number of Events

We find a peak at P
T

max  M
W
/2

The Jacobian Peak 15
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Notice the RHS is a 
function of only t, not Q.

This quantity should 
lie on a universal 

scaling curve.

 Cf., DIS case, 
& scattering of 

point-like constituents

Q2
−s=

1
s x1

 x2−


x1

Using: and

we can write the cross section in the scaling form:

Drell-Yan Cross Section and the Scaling Form 16



  

e+e-          R ratio
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e+e- Ratio of hadrons to muons
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e+ 
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NLO correction

3 quark colors
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e+e-  

NLO corrections
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p
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Define the energy fractions E
i
:

Energy Conservation:

e+e- to 3 particles final state

Range of x:

Exercise: show 3-body phase space is flat in dx
1
dx

2
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3-Particle Configurations

Collinear

Soft

3-Jet

After symmetrization 
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Singularities cancel between 2-particle and 3-particle graphs

Same result with 
gluon mass 

regularization
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e+e-  

Differential 
Cross Sections
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Differential Cross Section
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3
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What do we do about soft and 
collinear singularities????

Introduce the concept of “Infrared Safe Observable”

The soft and collinear singularities will cancel  
ONLY 

if the physical observables are appropriately defined. 

25



  

Collinear

Soft

Infrared Safe Observables

Observables must satisfy the following requirements: 
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Collinear

Soft

Infrared Safe Observables 27



  

Examples: Infrared Safe Observables

Infrared Safe Observables:

Event shape distributions
Jet Cross sections

Un-Safe Infrared Observables:

Momentum of the hardest particle
(affected by collinear splitting)

100% isolated particles 
(affected by soft emissions)

Particle multiplicity
(affected by both soft & collinear emissions)
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Collinear

Soft

Infrared Safe Observables: Define Jets 29



  

Jet Cone

Infrared Safe Observables: Define Jets 

Let's examine this 
definition a bit more closely
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Jet Cone
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Pseudo-Rapidity vs. Angle

Pseudo-Rapidity
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D0 Detector Schematic 33



ATLAS  Detector Schematic
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homework
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HOMEWORK:  Jet Cone Definition
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HOMEWORK: Light-Cone Coordinates & Boosts 37
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Rapidity vs. Pseudo-Rapidity 38



  

HOMEWORK:  Rapidity vs. Pseudo-Rapidity

h

y
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Jet Cone

Infrared Safe Observables: Define Jets 

Problem: 
The cone definition is simple, 

BUT 
it is too simple 

Such configurations can be mis-
identified as a 3-jet event

See talk by 
Dave Soper & 

Andrew Larkoski
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End of lecture 4: Recap

Drell-Yan:  Tremendous discovery potential

Need to compute 2 initial hadrons

e+e- processes:

Total Cross Section: 

Differential Cross Section: singularities

Infrared Safe Observables

Stable under soft and collinear emissions

Jet definition

Cone definition is simple:  

... it is TOO simple 
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Final Thoughts

Scaling, Dimensional Analysis, Factorization, Regularization & Renormalization, Infrared Saftey ... 
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Hi ET 
Jet Excess

CDF Collaboration, PRL 77, 438 (1996)

H1 Collaboration, ZPC74, 191 (1997)
ZEUS Collaboration, ZPC74, 207 (1997)

Hi  Q Excess

Can you find the Nobel Prize???

M
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X

conflusions.com
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Thanks to ...

and the many web pages where I borrowed my figures ...

Thanks to:

Dave Soper, George Sterman, 
John Collins, & Jeff Owens for ideas 
borrowed from previous CTEQ 
introductory lecturers

Thanks to Randy Scalise for the help on 
the Dimensional Regularization. 

Thanks to my friends at Grenoble who 
helped with suggestions and corrections.

Thanks to Jeff Owens for help on 
Drell-Yan and Resummation. 

To the CTEQ and MCnet folks 
for making all this possible. 
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  Keep an open mind!!! 45



  

END OF LECTURE 
4

46
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